Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioconjug Chem ; 34(12): 2293-2301, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-37983167

RESUMO

Developing site-specific conjugation technologies for antibody-drug conjugates (ADCs) aims to produce more homogeneous and controlled drug-loaded ADCs to reduce variability and thereby improve the therapeutic index. This article presents a technology that uses cysteine mutant antibodies and mild phosphine-based reductants to prepare site-specific ADCs. The two types of cysteine mutant antibodies, designated C6v1 and C6v2, have one of the interchain disulfide-forming cysteines in the Fab region in the light chain (LC214) or in the heavy chain (HC220) substituted by alanine (or other amino acids), respectively. Certain phosphine-based reductants were found to selectively reduce the "unpaired" cysteines, at the heavy chain (HC220) for C6v1 or at the light chain (LC214) for C6v2 while keeping the interchain disulfide bonds in the hinge region intact, resulting in 90% of DAR2 species and more than 95% of the desired specific conjugation at HC or LC following conjugation to maleimide moieties. The reduction method shows consistent selectivity toward various C6v1 or C6v2 antibody backbones. Sensitivity toward buffer pH for some reductants can be used to optimize reductant reactivity and selectivity. The technology can be further expanded to generate site-specific DAR4 or dual-payload ADCs based on C6v1 or C6v2 antibodies. This technology offers a method to control drug-loading and conjugation sites using a mild one-pot process, as compared to the reduction-oxidation methods used in technologies such as THIOMAB, and shows superior DAR profiles and process simplification as compared to other selective reduction methods.


Assuntos
Imunoconjugados , Imunoconjugados/química , Cisteína/química , Substâncias Redutoras , Anticorpos , Dissulfetos/química
2.
Anal Chem ; 94(27): 9674-9682, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35766479

RESUMO

Protein complexes are the functional machines in the cell and are heterogeneous due to protein sequence variations and post-translational modifications (PTMs). Here, we present an automated nondenaturing capillary isoelectric focusing-mass spectrometry (ncIEF-MS) methodology for uncovering the microheterogeneity of intact protein complexes. The method exhibited superior separation resolution for protein complexes than conventional native capillary zone electrophoresis (nCZE-MS). In our study, ncIEF-MS achieved liquid-phase separations and MS characterization of seven different forms of a streptavidin homotetramer with variations of N-terminal methionine removal, acetylation, and formylation and four forms of the carbonic anhydrase-zinc complex arising from variations of PTMs (succinimide, deamidation, etc.). In addition, ncIEF-MS resolved different states of an interchain cysteine-linked antibody-drug conjugate (ADC1) as a new class of anticancer therapeutic agents that bears a distribution of varied drug-to-antibody ratio (DAR) species. More importantly, ncIEF-MS enabled precise measurements of isoelectric points (pIs) of protein complexes, which reflect the surface electrostatic properties of protein complexes. We studied how protein sequence variations/PTMs modulate the pIs of protein complexes and how drug loading affects the pIs of antibodies. We discovered that keeping the N-terminal methionine residue of one subunit of the streptavidin homotetramer decreased its pI by 0.1, adding one acetyl group onto the streptavidin homotetramer reduced its pI by nearly 0.4, incorporating one formyl group onto the streptavidin homotetramer reduced its pI by around 0.3, and loading two more drug molecules on one ADC1 molecule increased its pI by 0.1. The data render the ncIEF-MS method a valuable tool for delineating protein complexes.


Assuntos
Metionina , Focalização Isoelétrica/métodos , Ponto Isoelétrico , Espectrometria de Massas , Estreptavidina
3.
Anal Methods ; 14(4): 383-393, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34939625

RESUMO

Routine and high-resolution characterization of monoclonal antibody (mAb) charge variants is vital for controlling mAb quality as therapeutics. Capillary isoelectric focusing-mass spectrometry (cIEF-MS) has emerged as a powerful tool for characterizing mAb charge variants because it can achieve high-resolution separation and highly sensitive detection of proteins. It provides much better identification of charge variants than the traditionally used cIEF-UV method. However, further improvement of cIEF-MS regarding stability and separation resolution is needed. Here, we improved the stability and enhanced separation resolution of automated cIEF-MS by bettering the quality of capillary neutral coating, reducing catholyte pH to 10 for cIEF-MS for the first time, and systematically optimizing the cIEF separation conditions. The improved cIEF-MS method was applied to characterize charge variants of three previously well characterized mAbs (NISTmAb, cetuximab, trastuzumab) and one tool mAb (mAb1). The charge variants of the studied mAbs were well resolved, and the majority of post-translational modifications (PTMs) found in those mAbs agreed with the literature. cIEF-MS analyses of mAb1 were capable of discovering ten charge variants with various interesting PTMs, such as PGK amidation, incomplete C-terminal lysine clipping, glycosylation, and deamination. cIEF-MS was successfully used for accurately determining the isoelectric points (pIs) of mAb1 charge variants via analyzing the pI markers and spiking in a standard protein (cytochrome c) to samples for migration time normalization, which is beneficial for evaluating pI-related pharmacokinetic properties. Our cIEF-MS agreed with and, in some cases (i.e., cetuximab and mAb1), outperformed cIEF-UV for detecting mAb charge variants.


Assuntos
Anticorpos Monoclonais , Anticorpos Monoclonais/análise , Anticorpos Monoclonais/química , Cetuximab , Focalização Isoelétrica/métodos , Ponto Isoelétrico , Espectrometria de Massas
4.
Anal Chem ; 93(29): 10013-10021, 2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34258999

RESUMO

Antibody-drug conjugates (ADCs) are one of the fastest growing classes of anticancer therapies. Combining the high targeting specificity of monoclonal antibodies (mAbs) with cytotoxic small molecule drugs, ADCs are complex molecular entities that are intrinsically heterogeneous. Primary sequence variants, varied drug-to-antibody ratio (DAR) species, and conformational changes in the starting mAb structure upon drug conjugation must be monitored to ensure the safety and efficacy of ADCs. Herein, we have developed a high-throughput method for the analysis of cysteine-linked ADCs using trapped ion mobility spectrometry (TIMS) combined with top-down mass spectrometry (MS) on a Bruker timsTOF Pro. This method can analyze ADCs (∼150 kDa) by TIMS followed by a three-tiered top-down MS characterization strategy for multi-attribute analysis. First, the charge state distribution and DAR value of the ADC are monitored (MS1). Second, the intact mass of subunits dissociated from the ADC by low-energy collision-induced dissociation (CID) is determined (MS2). Third, the primary sequence for the dissociated subunits is characterized by CID fragmentation using elevated collisional energies (MS3). We further automate this workflow by directly injecting the ADC and using MS segmentation to obtain all three tiers of MS information in a single 3-min run. Overall, this work highlights a multi-attribute top-down MS characterization method that possesses unparalleled speed for high-throughput characterization of ADCs.


Assuntos
Antineoplásicos , Imunoconjugados , Anticorpos Monoclonais , Espectrometria de Mobilidade Iônica , Espectrometria de Massas
5.
Anal Chem ; 92(22): 15096-15103, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33108180

RESUMO

Antibody drug conjugates (ADCs), which harness the high targeting specificity of monoclonal antibodies (mAb) with the potency of small molecule therapeutics, are one of the fastest growing pharmaceutical classes. Nevertheless, ADC conjugation techniques and processes may introduce intrinsic heterogeneity including primary sequence variants, varied drug-to-antibody ratio (DAR) species, and drug positional isomers, which must be monitored to ensure the safety and efficacy of ADCs. Liquid chromatography coupled to mass spectrometry (LC-MS) is a powerful tool for characterization of ADCs. However, the conventional bottom-up MS analysis workflows require an enzymatic digestion step which can be time consuming and may introduce artifactual modifications. Herein, we develop an online LC-MS/MS method for rapid analysis of reduced ADCs without digestion, enabling determination of DAR, characterization of the primary sequence, and localization of the drug conjugation site of the ADC using high-resolution Fourier transform ion cyclotron resonance (FTICR) MS. Specifically, a model cysteine-linked ADC was reduced to generate six unique subunits: light chain (Lc) without drug (Lc0), Lc with 1 drug (Lc1), heavy chain (Hc) without drug (Hc0), and Hc with 1-3 drugs (Hc1-3, respectively). A concurrent reduction strategy is applied to assess ADC subunits in both the partially reduced (intrachain disulfide bonds remain intact) and fully reduced (all disulfide bonds are cleaved) forms. The entire procedure including the sample preparation and LC-MS/MS takes less than 55 min, enabling rapid multiattribute analysis of ADCs.


Assuntos
Cromatografia Líquida/métodos , Ciclotrons , Análise de Fourier , Imunoconjugados/análise , Espectrometria de Massas em Tandem/instrumentação , Imunoconjugados/química , Isomerismo , Fatores de Tempo
6.
Methods Mol Biol ; 2078: 221-233, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31643060

RESUMO

In-depth knowledge about the site of drug-linker conjugation is important for the understanding of the conjugation efficiency and the exact locations of payloads for antibody-drug conjugates (ADCs). Here we describe a peptide mapping-based protocol, covering sample preparation procedure, LC-MS/MS setup, and data processing (auto and manual), to determine the locations of drug-linker attachment on mAbs. In comparison with classical mAb peptide mapping, some improvements will be highlighted for maintaining hydrophobic drug-loaded peptides in solution, enabling efficient chromatographic separation and mass spectrometric detection, and allowing for their unambiguous identification in LC-MS/MS map by using diagnostic fragmentation ions of the payload.


Assuntos
Sequência de Aminoácidos , Imunoconjugados/análise , Imunoconjugados/química , Espectrometria de Massas em Tandem , Algoritmos , Cromatografia Líquida , Cisteína/química , Interpretação Estatística de Dados , Humanos , Interações Hidrofóbicas e Hidrofílicas , Software , Espectrometria de Massas em Tandem/métodos
7.
MAbs ; 11(6): 1113-1121, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31238787

RESUMO

Charge variants are important attributes of monoclonal antibodies, including antibody-drug conjugates (ADCs), because charge variants can potentially influence the stability and biological activity of these molecules. Ion exchange chromatography (IEX) is widely used for charge variants analysis of mAbs and offers the feasibility of fractionation for in-depth characterization. However, the conjugated linker-drug on ADCs could potentially affect the separation performance of IEX, considering IEX separation relies on surface charge distribution of analyte and involves the interaction between analyte surface and IEX stationary phase. Here, we investigated weak cation exchange chromatography (WCX) for its application in analyzing three ADCs (two broad distribution ADCs and an ADC with controlled conjugation sites) and the 2-drug/4-drug loaded species isolated from the two broad distribution ADCs using hydrophobic interaction chromatography. The major peaks in WCX profile were characterized via fraction collection followed by capillary electrophoresis-sodium dodecyl sulfate or peptide mapping. Results suggested that both the number of drug loads and conjugation sites could impact WCX separation of an ADC. The hypothesis was that the linker drugs could interfere with the ionic interaction between its surrounding amino acids on the mAb surface and column resin, which reduced the retention of ADCs on WCX column in this study. Our results further revealed that WCX brings good selectivity towards positional isomers, but limited resolution for different drug load, which causes the peak compositions of the two broad-distribution ADCs to be highly complex. We also compared results from WCX and imaged capillary isoelectric focusing (icIEF). Results showed that separation in icIEF was less influenced by conjugated linker drugs for the ADCs studied in this work, and better alignment was found between the two techniques for the ADC with controlled conjugate sites. Overall, this work provides insights into the complexity of WCX analysis of ADCs, which should be considered during method development and sample characterization.


Assuntos
Anticorpos Monoclonais/química , Imunoconjugados/isolamento & purificação , Anticorpos Monoclonais/imunologia , Cromatografia por Troca Iônica , Humanos , Interações Hidrofóbicas e Hidrofílicas , Imunoconjugados/química , Focalização Isoelétrica
8.
Anal Chem ; 87(22): 11509-15, 2015 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-26471104

RESUMO

Monoclonal antibodies (mAbs) are among the fastest growing class of therapeutics due to their high specificity and low incidence of side effects. Unlike most drugs, mAbs are complex macromolecules (∼150 kDa), leading to a host of quality control and characterization challenges inherent in their development. Recently, we introduced a new approach for the analysis of the intact proteins based on ion mobility-mass spectrometry (IM-MS). Our protocol involves the collision induced unfolding (CIU) of intact antibodies, where collisional heating in the gas-phase is used to generate unfolded antibody forms, which are subsequently separated by IM and then analyzed by MS. Collisional energy is added to the antibody ions in a stepwise fashion, and "fingerprint plots" are created that track the amount of unfolding undergone as a function of the energy imparted to the ions prior to IM separation. In this report, we have used these fingerprints to rapidly distinguish between antibody isoforms, possessing different numbers and/or patterns of disulfide bonding and general levels of glycosylation. In addition, we validate our CIU protocols through control experiments and systematic statistical evaluations of CIU reproducibility. We conclude by projecting the impact of our approach for antibody-related drug discovery and development applications.


Assuntos
Anticorpos Monoclonais/química , Dissulfetos/química , Desdobramento de Proteína , Glicosilação , Espectrometria de Massas , Estrutura Molecular
9.
Anal Chem ; 87(13): 6808-13, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26075825

RESUMO

Electrospray ionization coupled to mass spectrometry is a key technology for determining the stoichiometries of multiprotein complexes. Despite highly accurate results for many assemblies, challenging samples can generate signals for artifact protein-protein binding born of the crowding forces present within drying electrospray droplets. Here, for the first time, we study the formation of preferred protein quaternary structures within such rapidly evaporating nanodroplets. We use ion mobility and tandem mass spectrometry to investigate glutamate dehydrogenase dodecamers and serum amyloid P decamers as a function of protein concentration, along with control experiments using carefully chosen protein analogues, to both establish the formation of operative mechanisms and assign the bimodal conformer populations observed. Further, we identify an unprecedented symmetric collision-induced dissociation pathway that we link directly to the quaternary structures of the precursor ions selected.


Assuntos
Espectrometria de Massas/métodos , Estrutura Quaternária de Proteína , Espectrometria de Massas por Ionização por Electrospray
10.
Angew Chem Int Ed Engl ; 53(35): 9209-12, 2014 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-24990104

RESUMO

The three-dimensional structures adopted by proteins are predicated by their many biological functions. Mass spectrometry has played a rapidly expanding role in protein structure discovery, enabling the generation of models for both proteins and their higher-order assemblies. While important coursed-grained insights have been generated, relatively few examples exist where mass spectrometry has been successfully applied to the characterization of protein tertiary structure. Here, we demonstrate that gas-phase unfolding can be used to determine the number of autonomously folded domains within monomeric proteins. Our ion mobility-mass spectrometry data highlight a strong, positive correlation between the number of protein unfolding transitions observed in the gas phase and the number of known domains within a group of sixteen proteins ranging from 8-78 kDa. This correlation and its potential uses for structural biology is discussed.


Assuntos
Gases/química , Desdobramento de Proteína , Proteínas/química , Espectrometria de Massas , Modelos Moleculares , Estrutura Terciária de Proteína , Soluções
12.
Faraday Discuss ; 160: 371-88; discussion 389-403, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23795511

RESUMO

The role that water plays in the salt-based stabilization of proteins is central to our understanding of protein biophysics. Ion hydration and the ability of ions to alter water surface tension are typically invoked, along with direct ion-protein binding, to describe Hofmeister stabilization phenomena observed for proteins experimentally, but the relative influence of these forces has been extraordinarily difficult to measure directly. Recently, we have used gas-phase measurements of proteins and large multiprotein complexes, using a combination of innovative ion mobility (IM) and mass spectrometry (MS) techniques, to assess the ability of bound cations and anions to stabilize protein ions in the absence of the solvation forces described above. Our previous work has studied a broad set of 12 anions bound to a range of proteins and protein complexes, and while primarily motivated by the analytical challenges surrounding the gas-phase measurement of solution-phase relevant protein structures, our work has also lead to a detailed physical mechanism of anion-protein complex stabilization in the absence of bulk solvent. Our more-recent work has screened a similarly-broad set of cations for their ability to stabilize gas-phase protein structure, and we have discovered surprising differences between the operative mechanisms for cations and anions in gas-phase protein stabilization. In both cases, cations and anions affect protein stabilization in the absence of solvent in a manner that is generally reversed relative to their ability to stabilize the same proteins in solution. In addition, our evidence suggests that the relative solution-phase binding affinity of the anions and cations studied here is preserved in our gas-phase measurements, allowing us to study the influence of such interactions in detail. In this report, we collect and summarize such gas-phase measurements to distill a generalized picture of salt-based protein stabilization in the absence of bulk water. Further, we communicate our most recent efforts to study the combined effects of stabilizing cations and anions on gas-phase proteins, and identify those salts that bear anion/cation pairs having the strongest stabilizing influence on protein structures


Assuntos
Proteínas/química , Sais/química , Água/química , Espectrometria de Massas , Conformação Proteica
13.
J Am Soc Mass Spectrom ; 24(9): 1328-37, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23797863

RESUMO

Maturation of the nickel-containing urease of Klebsiella aerogenes is facilitated by the UreD, UreF, and UreG accessory proteins along with the UreE metallo-chaperone. A fusion of the maltose binding protein and UreD (MBP-UreD) was co-isolated with UreF and UreG in a soluble complex possessing a (MBPUreD: UreF:UreG)2 quaternary structure. Within this complex a UreF:UreF interaction was identified by chemical cross-linking of the amino termini of its two UreF protomers, as shown by mass spectrometry of tryptic peptides. A preactivation complex was formed by the interaction of (MBP-UreD:UreF:UreG)2 and urease. Mass spectrometry of intact protein species revealed a pathway for synthesis of the urease pre-activation complex in which individual hetero-trimer units of the (MBP-UreD:UreF:UreG)2 complex bind to urease. Together, these data provide important new insights into the structures of protein complexes associated with urease activation.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Transporte/metabolismo , Enterobacter aerogenes/enzimologia , Urease/metabolismo , Proteínas de Bactérias/química , Proteínas de Transporte/química , Enterobacter aerogenes/química , Enterobacter aerogenes/metabolismo , Ativação Enzimática , Modelos Moleculares , Proteínas de Ligação a Fosfato , Mapas de Interação de Proteínas , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Urease/química
14.
Int J Ion Mobil Spectrom ; 16(1): 41-50, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-23539363

RESUMO

Ion mobility-mass spectrometry is often applied to the structural elucidation of multiprotein assemblies in cases where X-ray crystallography or NMR experiments have proved challenging. Such applications are growing steadily as we continue to probe regions of the proteome that are less-accessible to such high-resolution structural biology tools. Since ion mobility measures protein structure in the absence of bulk solvent, strategies designed to more-broadly stabilize native-like protein structures in the gas-phase would greatly enable the application of such measurements to challenging structural targets. Recently, we have begun investigating the ability of salt-based solution additives that remain bound to protein ions in the gas-phase to stabilize native-like protein structures. These experiments, which utilize collision induced unfolding and collision induced dissociation in a tandem mass spectrometry mode to measure protein stability, seek to develop a rank-order similar to the Hofmeister series that categorizes the general ability of different anions and cations to stabilize gas-phase protein structure. Here, we study magnesium chloride as a potential stabilizing additive for protein structures in vacuo, and find that the addition of this salt to solutions prior to nano-electrospray ionization dramatically enhances multiprotein complex structural stability in the gas-phase. Based on these experiments, we also refine the physical mechanism of cation-based protein complex ion stabilization by tracking the unfolding transitions experienced by cation-bound complexes. Upon comparison with unbound proteins, we find strong evidence that stabilizing cations act to tether protein complex structure. We conclude by putting the results reported here in context, and by projecting the future applications of this method.

16.
J Am Chem Soc ; 133(29): 11358-67, 2011 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-21675748

RESUMO

The combination of ion mobility separation with mass spectrometry is an emergent and powerful structural biology tool, capable of simultaneously assessing the structure, topology, dynamics, and composition of large protein assemblies within complex mixtures. An integral part of the ion mobility-mass spectrometry measurement is the ionization of intact multiprotein complexes and their removal from bulk solvent. This process, during which a substantial portion of protein structure and organization is likely to be preserved, imposes a foreign environment on proteins that may cause structural rearrangements to occur. Thus, a general means must be identified to stabilize protein structures in the absence of bulk solvent. Our approach to this problem involves the protection of protein complex structure through the addition of salts in solution prior to desorption/ionization. Anionic components of the added salts bind to the complex either in solution or during the electrospray process, and those that remain bound in the gas phase tend to have high gas phase acidities. The resulting 'shell' of counterions is able to carry away excess energy from the protein complex ion upon activation and can result in significant structural stabilization of the gas-phase protein assembly overall. By using ion mobility-mass spectrometry, we observe both the dissociation and unfolding transitions for four tetrameric protein complexes bound to populations of 12 different anions using collisional activation. The data presented here quantifies, for the first time, the influence of a large range of counterions on gas-phase protein structure and allows us to rank and classify counterions as structure stabilizers in the absence of bulk solvent. Our measurements indicate that tartrate, citrate, chloride, and nitrate anions are among the strongest stabilizers of gas-phase protein structure identified in this screen. The rank order determined by our data is substantially different when compared to the known Hofmeister salt series in solution. While this is an expected outcome of our work, due to the diminished influence of anion and protein solvation by water, our data correlates well to expected anion binding in solution and highlights the fact that both hydration layer and anion-protein binding effects are critical for Hofmeister-type stabilization in solution. Finally, we present a detailed mechanism of action for counterion stabilization of proteins and their complexes in the gas-phase, which indicates that anions must bind with high affinity, but must dissociate readily from the protein in order to be an effective stabilizer. Anion-resolved data acquired for smaller protein systems allows us to classify anions into three categories based on their ability to stabilize protein and protein complex structure in the absence of bulk solvent.


Assuntos
Ânions/química , Complexos Multiproteicos/química , Animais , Ânions/metabolismo , Humanos , Complexos Multiproteicos/metabolismo , Ligação Proteica , Estabilidade Proteica , Desdobramento de Proteína , Solventes , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...