Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; 11(28): e2310017, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38747256

RESUMO

Laser-induced graphene (LIG) technology has provided a new manufacturing strategy for the rapid and scalable assembling of triboelectric nanogenerators (TENG). However, current LIG-based TENG commonly rely on polymer films, e.g., polyimide (PI) as both friction material and carbon precursor of electrodes, which limit the structural diversity and performance escalation due to its incapability of folding and creasing. Using specialized PI paper composed of randomly distributed PI fibers to substantially enhance its foldability, this work creates a new type of TENG, which are structurally foldable and stackable, and performance tailorable. First, by systematically investigating the laser power-regulated performance of single-unit TENG, the open-circuit voltage can be effectively improved. By further exploiting the folding process, multiple TENG units can be assembled together to form multi-layered structures to continuously expand the open-circuit voltage from 5.3 to 34.4 V cm-2, as the increase of friction units from 1 to 16. Last, by fully utilizing the unique structure and performance, representative energy-harvesting and smart-sensing applications are demonstrated, including a smart shoe to recognize running motions and power LEDs, a smart leaf to power a thermometer by wind, a matrix sensor to recognize writing trajectories, as well as a smart glove to recognize different objects.

2.
Artigo em Inglês | MEDLINE | ID: mdl-36759946

RESUMO

Capacitive humidity sensors have been used for human health monitoring, but their performance may be poor in terms of sensitivity and response time, because of limitations in sensing materials and insufficient knowledge about sensing mechanisms. Herein, a new combination of humidity sensing materials to assemble thin-film based capacitive-type sensors is proposed by using PA-doped polybenzimidazole (PA-PBI) as an electrolyte and laser-carbonized PA-PBI as a carbon electrode (PA-PBI-C). Based on PA involved laser scribing, the flexible sensor can reach excellent humidity-sensing performances with an ultrahigh sensitivity (1.16 × 106 pF RH%-1, where RH represents the relative humidity), a superior linearity (R2 = 0.9982), a fast response time (0.72 s), and a low hysteresis in a wide RH range from 1% to 95%. By further studying P-O decorated porous carbon electrode with superhydrophilicity and the solid-state dielectric electrolyte featured by a high dielectric constant, a synergistic sensing mechanism consisting of a "Water reservoir" and a "Bridge" is established to support advanced health-monitoring applications such as the respiration patterns and skin condition where both sensitivity and response time are critical.

3.
Small ; 17(42): e2103322, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34523240

RESUMO

Functional surfaces with tunable and patternable wettability have attracted significant research interests because of remarkable advantages in biomedicine, environmental, and energy storage applications. Based on combined defocusing and grafting strategy for processing laser-induced graphene papers (LIGPs) with variable surface roughness (58.18-6.08 µm) and F content (0-25.9%), their wettability can be tuned continuously from superlyophilicity (contact angle CA ≈ 0° ) to superlyophobicity (CA > 150° ), for various liquids with a wide range of surface tensions from 27.5 to 72.8 mN m-1 . In addition to reaching multiple wetting characteristics including amphiphilic, amphiphobic, and hydrophobic-oleophilic states, three designable processes are further developed for achieving LIGPs with various wetting patterns, including hydrophilic arrays or channels, hydrophobic-to-hydrophilic gradients, and Janus. Activated by the customly designed structures and properties, multifunctional and multi-scenario applications are successfully attempted, including 2D-/3D- directional cell cultivation, water transportation diode, self-triggered liquid transfer & collection, etc.


Assuntos
Grafite , Interações Hidrofóbicas e Hidrofílicas , Lasers , Tensão Superficial , Molhabilidade
4.
Lab Chip ; 19(5): 767-777, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30730524

RESUMO

Droplet evaporative crystallization on a micro-structured platform with limited interfacial area has potential applications in crystallization theory, bioengineering, and particle drug preparation. Here, an efficient and versatile approach is discussed for multiple drop-evaporative crystallization processes on a micro-crystallization chip fabricated via three-dimensional printing. A chip with limited interfacial area could be fabricated on a highly controlled crystallizer interface. During liquid injection, various drop locations and evaporative conditions can be used, which enables flexible and distinct crystallization processes. This reveals controlling mechanisms and identifies nucleation locations and growth paths. Various classic crystallization systems were introduced to evaluate the chip performance. Controlled nucleation and growth mechanisms at stable evaporative rates were revealed. From the final crystal morphologies, particle locations, and distributions, the effects of the initial concentration and droplet contact conditions at the triple-phase interface could be investigated with high adjustability. Moreover, the results can provide insights into the 'coffee ring' formation during evaporative crystallization, dendritic crystal growth, and hydrate crystallization mechanisms. In the limited microstructure, the capillary flow of a liquid drop can spontaneously drive the crystal distribution and morphology. Finally, incorrect liquid drop locations that led to unpredictable crystal formation and distributions were discussed to improve repeatability and efficiency. Applications include the manufacture of particle drugs and flow chemistry.

5.
Proc Natl Acad Sci U S A ; 103(23): 8768-73, 2006 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-16731627

RESUMO

The BRCA2 tumor suppressor plays an important role in the repair of DNA damage by homologous recombination, also termed homology-directed repair (HDR). Human BRCA2 is 3,418 aa and is composed of several domains. The central part of the protein contains multiple copies of a motif that binds the Rad51 recombinase (the BRC repeat), and the C terminus contains domains that have structural similarity to domains in the ssDNA-binding protein replication protein A (RPA). To gain insight into the role of BRCA2 in the repair of DNA damage, we fused a single (BRC3, BRC4) or multiple BRC motifs to the large RPA subunit. Expression of any of these protein fusions in Brca2 mutant cells substantially improved HDR while suppressing mutagenic repair. A fusion containing a Rad52 ssDNA-binding domain also was active in HDR. Mutations that reduced ssDNA or Rad51 binding impaired the ability of the fusion proteins to function in HDR. The high level of spontaneous chromosomal aberrations in Brca2 mutant cells was largely suppressed by the BRC-RPA fusion proteins, supporting the notion that the primary role of BRCA2 in maintaining genomic integrity is in HDR, specifically to deliver Rad51 to ssDNA. The fusion proteins also restored Rad51 focus formation and cellular survival in response to DNA damaging agents. Because as little as 2% of BRCA2 fused to RPA is sufficient to suppress cellular defects found in Brca2-mutant mammalian cells, these results provide insight into the recently discovered diversity of BRCA2 domain structures in different organisms.


Assuntos
Proteína BRCA2/deficiência , Proteína BRCA2/metabolismo , Reparo do DNA , Proteínas Recombinantes de Fusão/metabolismo , Animais , Proteína BRCA2/química , Aberrações Cromossômicas , Cricetinae , Dano ao DNA/genética , DNA de Cadeia Simples/metabolismo , Expressão Gênica , Humanos , Camundongos , Fenótipo , Ligação Proteica , Rad51 Recombinase/metabolismo , Recombinação Genética , Proteína de Replicação A/metabolismo
6.
Nucleic Acids Res ; 30(15): 3454-63, 2002 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-12140331

RESUMO

Non-homologous end joining (NHEJ) and homologous recombination (HR) are two alternative/competitor pathways for the repair of DNA double-strand breaks (DSBs). To gain further insights into the regulation of DSB repair, we detail here the different HR pathways affected by (i) the inactivation of DNA-PK activity, by treatment with Wortmannin, and (ii) a mutation in the xrcc4 gene, involved in a late NHEJ step, using the XR-1 cell line. Here we have analyzed not only the impact of NHEJ inactivation on recombination induced by a single DSB targeted to the recombination substrate (using I-SceI endonuclease) but also on gamma-ray- and UV-C-induced and spontaneous recombination and finally on Rad51 foci formation, i.e. on the assembly of the homologous recombination complex, at the molecular level. The results presented here show that in contrast to embryonic stem cells, the xrcc4 mutation strongly stimulates I-SceI-induced HR in adult hamster cells. More precisely, we show here that both single strand annealing and gene conversion are stimulated. In contrast, Wortmannin does not affect I-SceI-induced HR. In addition, gamma-ray-induced recombination is stimulated by both xrcc4 mutation and Wortmannin treatment in an epistatic-like manner. In contrast, neither spontaneous nor UV-C-induced recombination was affected by xrcc4 mutation, showing that the channeling from NHEJ to HR is specific to DSBs. Finally, we show here that xrcc4 mutation or Wortmannin treatment results in a stimulation of Rad51 foci assembly, thus that a late NHEJ step is able to affect Rad51 recombination complex assembly. The present data suggest a model according to which NHEJ and HR do not simply compete for DSB repair but can act sequentially: a defect in a late NHEJ step is not a dead end and can make DSB available for subsequent Rad51 recombination complex assembly.


Assuntos
Androstadienos/farmacologia , Reparo do DNA , Proteínas de Ligação a DNA/genética , Inibidores Enzimáticos/farmacologia , Recombinação Genética , Animais , Células CHO , Linhagem Celular , Cricetinae , Dano ao DNA , Proteína Quinase Ativada por DNA , Proteínas de Ligação a DNA/metabolismo , Raios gama , Modelos Genéticos , Mutação , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Rad51 Recombinase , Tolerância a Radiação , Transdução de Sinais , Raios Ultravioleta , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA