Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39095230

RESUMO

Cellular turnover is fundamental for tissue homeostasis and integrity. Adipocyte turnover, accounting for 4% of the total cellular mass turnover in humans, is essential for adipose tissue homeostasis during metabolic stress. In obesity, an altered adipose tissue microenvironment promotes adipocyte death. To clear dead adipocytes, macrophages are recruited and form a distinctive structure known as crown-like structure; subsequently, new adipocytes are generated from adipose stem and progenitor cells in the adipogenic niche to replace dead adipocytes. Accumulating evidence indicates that adipocyte death, clearance, and adipogenesis are sophisticatedly orchestrated during adipocyte turnover. In this Review, we summarize our current understandings of each step in adipocyte turnover, discussing its key players and regulatory mechanisms.

2.
Angew Chem Int Ed Engl ; 63(12): e202319707, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38294268

RESUMO

Fast charging technology for electric vehicles (EVs), offering rapid charging times similar to conventional vehicle refueling, holds promise but faces obstacles owing to kinetic issues within lithium-ion batteries (LIBs). Specifically, the significance of cathode materials in fast charging has grown because Ni-rich cathodes are employed to enhance the energy density of LIBs. Herein, the mechanism behind the loss of fast charging capability of Ni-rich cathodes during extended cycling is investigated through a comparative analysis of Ni-rich cathodes with different microstructures. The results revealed that microcracks and the resultant cathode deterioration significantly compromised the fast charging capability over extended cycling. When thick rocksalt impurity phases form throughout the particles owing to electrolyte infiltration via microcracks, the limited kinetics of Li+ ions create electrochemically unreactive areas under high-current conditions, resulting in the loss of fast charging capability. Hence, preventing microcrack formation by tailoring microstructures is essential to ensure stability in fast charging capability. Understanding the relationship between microcracks and the loss of fast charging capability is essential for developing Ni-rich cathodes that facilitate stable fast charging upon extended cycling, thereby promoting widespread EV adoption.

3.
Nat Commun ; 14(1): 8512, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38129377

RESUMO

Adipose tissue invariant natural killer T (iNKT) cells are a crucial cell type for adipose tissue homeostasis in obese animals. However, heterogeneity of adipose iNKT cells and their function in adipocyte turnover are not thoroughly understood. Here, we investigate transcriptional heterogeneity in adipose iNKT cells and their hierarchy using single-cell RNA sequencing in lean and obese mice. We report that distinct subpopulations of adipose iNKT cells modulate adipose tissue homeostasis through adipocyte death and birth. We identify KLRG1+ iNKT cells as a unique iNKT cell subpopulation in adipose tissue. Adoptive transfer experiments showed that KLRG1+ iNKT cells are selectively generated within adipose tissue microenvironment and differentiate into a CX3CR1+ cytotoxic subpopulation in obese mice. In addition, CX3CR1+ iNKT cells specifically kill enlarged and inflamed adipocytes and recruit macrophages through CCL5. Furthermore, adipose iNKT17 cells have the potential to secrete AREG, and AREG is involved in stimulating adipose stem cell proliferation. Collectively, our data suggest that each adipose iNKT cell subpopulation plays key roles in the control of adipocyte turnover via interaction with adipocytes, adipose stem cells, and macrophages in adipose tissue.


Assuntos
Células T Matadoras Naturais , Camundongos , Animais , Células T Matadoras Naturais/metabolismo , Camundongos Obesos , Tecido Adiposo/metabolismo , Adipócitos/metabolismo , Obesidade/genética , Obesidade/metabolismo , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA