Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Pharmaceutics ; 15(8)2023 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-37631328

RESUMO

Given the limitations of conventional invasive vaccines, such as the requirement for a cold chain system and trained personnel, needle-based injuries, and limited immunogenicity, non-invasive vaccines have gained significant attention. Although numerous approaches for formulating and administrating non-invasive vaccines have emerged, each of them faces its own challenges associated with vaccine bioavailability, toxicity, and other issues. To overcome such limitations, researchers have created novel supplementary materials and delivery systems. The goal of this review article is to provide vaccine formulation researchers with the most up-to-date information on vaccine formulation and the immunological mechanisms available, to identify the technical challenges associated with the commercialization of non-invasive vaccines, and to guide future research and development efforts.

2.
ACS Nano ; 17(18): 17811-17825, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37639494

RESUMO

Surfaces contaminated with pathogens raise concerns about the increased risk of disease transmission and infection. To clean biocontaminated surfaces, alcohol-based disinfectants have been predominantly used for disinfecting high-touch areas in diverse settings. However, due to its limited antimicrobial activities and concern over the emergence of alcohol-tolerant strains, much effort has been made to develop highly efficient disinfectant formulations. In this study, we hypothesize that the addition of a physical pathogen inactivation mechanism by salt recrystallization (besides the existing chemical inactivation mechanism by alcohol in such formulations) can improve inactivation efficiency by preventing the emergence of alcohol tolerance. To this end, we employed the drying-induced salt recrystallization process to implement the concept of highly efficient alcohol-based disinfectant formulations. To identify the individual and combined effects of isopropyl alcohol (IPA) and NaCl, time-dependent morphological/structural changes of various IPA solutions containing NaCl have been characterized by optical microscopy/X-ray diffraction analysis. Their antimicrobial activities have been tested on surfaces (glass slide, polystyrene Petri dish, and stainless steel) contaminated with Gram-positive/negative bacteria (methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica subsp. enterica Typhimurium) and viruses (A/PR8/34 H1N1 influenza virus and HCoV-OC43 human coronavirus). We found that additional salt crystallization during the drying of the alcohol solution facilitated stronger biocidal effects than IPA-only formulations, regardless of the types of solid surfaces and pathogens, including alcohol-tolerant strains adapted from wild-type Escherichia coli MG1655. Our findings can be useful in developing highly effective disinfectant formulations by minimizing the use of toxic antimicrobial substances to improve public health and safety.


Assuntos
Anti-Infecciosos , Desinfetantes , Vírus da Influenza A Subtipo H1N1 , Staphylococcus aureus Resistente à Meticilina , Humanos , Desinfetantes/farmacologia , Cloreto de Sódio/farmacologia , Anti-Infecciosos/farmacologia , Etanol , 2-Propanol/farmacologia , Escherichia coli
3.
Medicine (Baltimore) ; 102(12): e33267, 2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-36961172

RESUMO

Human walking reflects the state of human health. Numerous medical studies have been conducted to analyze walking patterns and to diagnose disease progression. However, this process requires expensive equipment and considerable time and manpower. Smartwatches are equipped with gyro sensors to detect human movements and graph-walking patterns. To measure the abnormality in walking using this graph, we developed a smartwatch gait coordination index (SGCI) and examined its usefulness. The phase coordination index was applied to analyze arm movements. Based on previous studies, the phase coordination index formula was applied to graphs obtained from arm movements, showing that arm and leg movements during walking are correlated with each other. To prove this, a smartwatch was worn on the arms and legs of 8 healthy adults and the difference in arm movements was measured. The SGCI values with abnormal walking patterns were compared with the SGCI values obtained during normal walking. In the first experiment, the measured leg SGCI in normal walking averaged 9.002 ± 3.872 and the arm SGCI averaged 9.847 ± 6.115. The movements of both arms and legs showed stable sinusoidal waves. In fact, as a result of performing a paired t test of both exercise phases measured by the strike point using the maximum and minimum values, it was confirmed that the 2 exercises were not statistically different, as it yielded a P value of 0.469 (significance level α = 0.05). The arm SGCI measured after applying the 3 kg weight impairment on 1 leg was 22.167 ± 4.705. It was confirmed that the leg SGCI and 3 kg weight arm SGCI were statistically significant, as it yielded a P value of 0.001 (significance level α = 0.05). The SCGI can be automatically and continuously measured with the gyro sensor of the smartwatch and can be used as an indirect indicator of human walking conditions.


Assuntos
Marcha , Caminhada , Adulto , Humanos , Perna (Membro) , Braço , Movimento
4.
Eur Urol Oncol ; 5(4): 430-439, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33812851

RESUMO

BACKGROUND: Despite biomarker development advances, early detection of aggressive prostate cancer (PCa) remains challenging. We previously developed a clinical-grade urine test (Michigan Prostate Score [MiPS]) for individualized aggressive PCa risk prediction. MiPS combines serum prostate-specific antigen (PSA), the TMPRSS2:ERG (T2:ERG) gene fusion, and PCA3 lncRNA in whole urine after digital rectal examination (DRE). OBJECTIVE: To improve on MiPS with a novel next-generation sequencing (NGS) multibiomarker urine assay for early detection of aggressive PCa. DESIGN, SETTING, AND PARTICIPANTS: Preclinical development and validation of a post-DRE urine RNA NGS assay (Urine Prostate Seq [UPSeq]) assessing 84 PCa transcriptomic biomarkers, including T2:ERG, PCA3, additional PCa fusions/isoforms, mRNAs, lncRNAs, and expressed mutations. Our UPSeq model was trained on 73 patients and validated on a held-out set of 36 patients representing the spectrum of disease (benign to grade group [GG] 5 PCa). OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: The area under the receiver operating characteristic curve (AUC) of UPSeq was compared with PSA, MiPS, and other existing models/biomarkers for predicting GG ≥3 PCa. RESULTS AND LIMITATIONS: UPSeq demonstrated high analytical accuracy and concordance with MiPS, and was able to detect expressed germline HOXB13 and somatic SPOP mutations. In an extreme design cohort (n = 109; benign/GG 1 vs GG ≥3 PCa, stratified to exclude GG 2 cancer in order to capture signal difference between extreme ends of disease), UPSeq showed differential expression for T2:ERG.T1E4 (1.2 vs 78.8 median normalized reads, p < 0.00001) and PCA3 (1024 vs 2521, p = 0.02), additional T2:ERG splice isoforms, and other candidate biomarkers. Using machine learning, we developed a 15-transcript model on the training set (n = 73) that outperformed serum PSA and sequencing-derived MiPS in predicting GG ≥3 PCa in the held-out validation set (n = 36; AUC 0.82 vs 0.69 and 0.69, respectively). CONCLUSIONS: These results support the potential utility of our novel urine-based RNA NGS assay to supplement PSA for improved early detection of aggressive PCa. PATIENT SUMMARY: We have developed a new urine-based test for the detection of aggressive prostate cancer, which promises improvement upon current biomarker tests.


Assuntos
Próstata , Neoplasias da Próstata , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/urina , Biomarcadores Tumorais , Detecção Precoce de Câncer , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Proteínas Nucleares/genética , Antígeno Prostático Específico , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , RNA/urina , Proteínas Repressoras/genética
5.
Nano Lett ; 21(12): 5422-5429, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-33900775

RESUMO

COVID-19 poses a major threat to global health and socioeconomic structures, and the need for a highly effective, antimicrobial face mask has been considered a major challenge for protection against respiratory diseases. Here, we report the development of a universal, antiviral, and antibacterial material that can be dip-/spray-coated over conventional mask fabrics to exhibit antimicrobial activities. Our data shows that antimicrobial fabrics rapidly inactivated multiple types of viruses, i.e., human (alpha/beta) coronaviruses, the influenza virus, and bacteria, irrespective of their modes of transmission (aerosol or droplet). This research provides an immediate method to contain infectious diseases, such as COVID-19.


Assuntos
Anti-Infecciosos , COVID-19 , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Humanos , Máscaras , SARS-CoV-2
6.
ACS Appl Mater Interfaces ; 13(14): 16084-16096, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33793211

RESUMO

As COVID-19 exemplifies, respiratory diseases transmitted through aerosols or droplets are global threats to public health, and respiratory protection measures are essential first lines of infection prevention and control. However, common face masks are single use and can cause cross-infection due to the accumulated infectious pathogens. We developed salt-based formulations to coat membrane fibers to fabricate antimicrobial filters. Here, we report a mechanistic study on salt-induced pathogen inactivation. The salt recrystallization following aerosol exposure was characterized over time on sodium chloride (NaCl), potassium sulfate (K2SO4), and potassium chloride (KCl) powders and coatings, which revealed that NaCl and KCl start to recrystallize within 5 min and K2SO4 within 15 min. The inactivation kinetics observed for the H1N1 influenza virus and Klebsiella pneumoniae matched the salt recrystallization well, which was identified as the main destabilizing mechanism. Additionally, the salt-coated filters were prepared with different methods (with and without a vacuum process), which led to salt coatings with different morphologies for diverse applications. Finally, the salt-coated filters caused a loss of pathogen viability independent of transmission mode (aerosols or droplets), against both DI water and artificial saliva suspensions. Overall, these findings increase our understanding of the salt-recrystallization-based technology to develop highly versatile antimicrobial filters.


Assuntos
Filtração/instrumentação , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Máscaras , Cloreto de Potássio/química , Cloreto de Sódio/química , Sulfatos/química , Aerossóis , Filtros de Ar , Cristalização , Cinética , Membranas Artificiais , Polipropilenos , Pós , Dispositivos de Proteção Respiratória , Temperatura , Difração de Raios X
7.
Physica A ; 559: 125090, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32834438

RESUMO

For many countries attempting to control the fast-rising number of coronavirus cases and deaths, the race is on to "flatten the curve," since the spread of coronavirus disease 2019 (COVID-19) has taken on pandemic proportions. In the absence of significant control interventions, the curve could be steep, with the number of COVID-19 cases growing exponentially. In fact, this level of proliferation may already be happening, since the number of patients infected in Italy closely follows an exponential trend. Thus, we propose a test. When the numbers are taken from an exponential distribution, it has been demonstrated that they automatically follow Benford's Law (BL). As a result, if the current control interventions are successful and we flatten the curve (i.e., we slow the rate below an exponential growth rate), then the number of infections or deaths will not obey BL. For this reason, BL may be useful for assessing the effects of the current control interventions and may be able to answer the question, "How flat is flat enough?" In this study, we used an epidemic growth model in the presence of interventions to describe the potential for a flattened curve, and then investigated whether the epidemic growth model followed BL for ten selected countries with a relatively high mortality rate. Among these countries, South Korea showed a particularly high degree of control intervention. Although all of the countries have aggressively fought the epidemic, our analysis shows that all countries except for Japan satisfied BL, indicating the growth rates of COVID-19 were close to an exponential trend. Based on the simulation table in this study, BL test shows that the data from Japan is incorrect.

8.
Sci Rep ; 10(1): 13875, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32807805

RESUMO

Respiratory protection is key in infection prevention of airborne diseases, as highlighted by the COVID-19 pandemic for instance. Conventional technologies have several drawbacks (i.e., cross-infection risk, filtration efficiency improvements limited by difficulty in breathing, and no safe reusability), which have yet to be addressed in a single device. Here, we report the development of a filter overcoming the major technical challenges of respiratory protective devices. Large-pore membranes, offering high breathability but low bacteria capture, were functionalized to have a uniform salt layer on the fibers. The salt-functionalized membranes achieved high filtration efficiency as opposed to the bare membrane, with differences of up to 48%, while maintaining high breathability (> 60% increase compared to commercial surgical masks even for the thickest salt filters tested). The salt-functionalized filters quickly killed Gram-positive and Gram-negative bacteria aerosols in vitro, with CFU reductions observed as early as within 5 min, and in vivo by causing structural damage due to salt recrystallization. The salt coatings retained the pathogen inactivation capability at harsh environmental conditions (37 °C and a relative humidity of 70%, 80% and 90%). Combination of these properties in one filter will lead to the production of an effective device, comprehensibly mitigating infection transmission globally.


Assuntos
Filtros de Ar/microbiologia , Antibacterianos/química , Betacoronavirus , Infecções por Coronavirus/prevenção & controle , Máscaras/microbiologia , Membranas Artificiais , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Dispositivos de Proteção Respiratória/microbiologia , Cloreto de Sódio/química , Aerossóis , Antibacterianos/farmacologia , COVID-19 , Infecções por Coronavirus/transmissão , Infecções por Coronavirus/virologia , Cristalização , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Temperatura Alta , Humanos , Umidade , Pneumonia Viral/transmissão , Pneumonia Viral/virologia , SARS-CoV-2 , Cloreto de Sódio/farmacologia
9.
Neoplasia ; 22(4): 192-202, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32145689

RESUMO

Androgen receptor (AR) and its constitutively active variants (AR-Vs) have been extensively implicated in the progression and recurrence of prostate cancer, making them attractive targets in the treatment of this disease. Whether and how neddylation modification regulates AR, and the therapeutic implications of this potential regulation, are relatively unexplored areas of investigation. Here we report that neddylation inactivation by the pharmacological inhibitor MLN4924 or Lenti-shRNA-based genetic knockdown of neddylation activating enzyme (NAE) selectively suppressed growth and survival of prostate cancer cells with minor, if any, effect on normal prostate epithelial cells. MLN4924 also significantly suppressed the invasive capacity of prostate cancer cells. Furthermore, compared to monotherapy, the combination of MLN4924 with AR antagonist or castration significantly enhanced growth suppression of prostate cancer cells in vitro, and tumor growth in an in vivo xenograft model. Mechanistically, MLN4924 repressed the transcription of AR/AR-V7 and its downstream targets, and blocked MMP2 and MMP9 expression. Taken together, our study reveals that the neddylation pathway positively regulates AR/AR-V7 transcription, and that the neddylation inhibitor MLN4924 has therapeutic potential for the treatment of aggressive prostate cancers.


Assuntos
Regulação Neoplásica da Expressão Gênica , Processamento de Proteína Pós-Traducional , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ciclopentanos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Modelos Biológicos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Pirimidinas/farmacologia , Transcrição Gênica
10.
Clin Cancer Res ; 26(11): 2595-2602, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-31969336

RESUMO

PURPOSE: The potential biological determinants of aggressive prostate cancer in African American (AA) men are unknown. Here we characterize prostate cancer genomic alterations in the largest cohort to date of AA men with clinical follow-up for metastasis, with the aim to elucidate the key molecular drivers associated with poor prognosis in this population. EXPERIMENTAL DESIGN: Targeted sequencing was retrospectively performed on 205 prostate tumors from AA men treated with radical prostatectomy (RP) to examine somatic genomic alterations and percent of the genome with copy-number alterations (PGA). Cox proportional hazards analyses assessed the association of genomic alterations with risk of metastasis. RESULTS: At RP, 71% (145/205) of patients had grade group ≥3 disease, and 49% (99/202) were non-organ confined. The median PGA was 3.7% (IQR = 0.9%-9.4%) and differed by pathologic grade (P < 0.001) and stage (P = 0.02). Median follow-up was 5 years. AA men with the highest quartile of PGA had increased risks of metastasis (multivariable: HR = 13.45; 95% CI, 2.55-70.86; P = 0.002). The most common somatic mutations were SPOP (11.2%), FOXA1 (8.3%), and TP53 (3.9%). The most common loci altered at the copy number level were CDKN1B (6.3%), CHD1 (4.4%), and PTEN (3.4%). TP53 mutations and deep deletions in CDKN1B were associated with increased risks of metastasis on multivariable analyses (TP53: HR = 9.5; 95% CI, 2.2-40.6; P = 0.002; CDKN1B: HR = 6.7; 95% CI, 1.3-35.2; P = 0.026). CONCLUSIONS: Overall, PGA, somatic TP53 mutations, and a novel finding of deep deletions in CDKN1B were associated with poor prognosis in AA men. These findings require confirmation in additional AA cohorts.


Assuntos
Biomarcadores Tumorais/genética , Negro ou Afro-Americano/estatística & dados numéricos , Inibidor de Quinase Dependente de Ciclina p27/genética , Deleção de Genes , Recidiva Local de Neoplasia/patologia , Prostatectomia/métodos , Neoplasias da Próstata/patologia , Seguimentos , Genômica , Humanos , Masculino , Pessoa de Meia-Idade , Metástase Neoplásica , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/cirurgia , Recidiva Local de Neoplasia/terapia , Prognóstico , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Neoplasias da Próstata/terapia , Estudos Retrospectivos , Taxa de Sobrevida , População Branca/estatística & dados numéricos
11.
Mol Cancer Res ; 17(8): 1652-1664, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31110156

RESUMO

Tumor protein 53 (TP53; p53) is the most frequently altered gene in human cancer. Identification of vulnerabilities imposed by TP53 alterations may enable effective therapeutic approaches. Through analyzing short hairpin RNA (shRNA) screening data, we identified TP53RK-Binding Protein (TPRKB), a poorly characterized member of the tRNA-modifying EKC/KEOPS complex, as the most significant vulnerability in TP53-mutated cancer cell lines. In vitro and in vivo, across multiple benign-immortalized and cancer cell lines, we confirmed that TPRKB knockdown in TP53-deficient cells significantly inhibited proliferation, with minimal effect in TP53 wild-type cells. TP53 reintroduction into TP53-null cells resulted in loss of TPRKB sensitivity, confirming the importance of TP53 status in this context. In addition, cell lines with mutant TP53 or amplified MDM2 (E3-ubiquitin ligase for TP53) also showed high sensitivity to TPRKB knockdown, consistent with TPRKB dependence in a wide array of TP53-altered cancers. Depletion of other EKC/KEOPS complex members exhibited TP53-independent effects, supporting complex-independent functions of TPRKB. Finally, we found that TP53 indirectly mediates TPRKB degradation, which was rescued by coexpression of PRPK, an interacting member of the EKC/KEOPS complex, or proteasome inhibition. Together, these results identify a unique and specific requirement of TPRKB in a variety of TP53-deficient cancers. IMPLICATIONS: Cancer cells with genomic alterations in TP53 are dependent on TPRKB.


Assuntos
Apoptose , Proliferação de Células , Neoplasias do Colo/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Mutação , Proteína Supressora de Tumor p53/metabolismo , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Sistemas CRISPR-Cas , Ciclo Celular , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Nus , Células Tumorais Cultivadas , Proteína Supressora de Tumor p53/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
EMBO Mol Med ; 10(12)2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30467127

RESUMO

PARP-1 holds major functions on chromatin, DNA damage repair and transcriptional regulation, both of which are relevant in the context of cancer. Here, unbiased transcriptional profiling revealed the downstream transcriptional profile of PARP-1 enzymatic activity. Further investigation of the PARP-1-regulated transcriptome and secondary strategies for assessing PARP-1 activity in patient tissues revealed that PARP-1 activity was unexpectedly enriched as a function of disease progression and was associated with poor outcome independent of DNA double-strand breaks, suggesting that enhanced PARP-1 activity may promote aggressive phenotypes. Mechanistic investigation revealed that active PARP-1 served to enhance E2F1 transcription factor activity, and specifically promoted E2F1-mediated induction of DNA repair factors involved in homologous recombination (HR). Conversely, PARP-1 inhibition reduced HR factor availability and thus acted to induce or enhance "BRCA-ness". These observations bring new understanding of PARP-1 function in cancer and have significant ramifications on predicting PARP-1 inhibitor function in the clinical setting.


Assuntos
Reparo do DNA , Fator de Transcrição E2F1/metabolismo , Poli(ADP-Ribose) Polimerase-1/metabolismo , Neoplasias da Próstata/patologia , Animais , Linhagem Celular , Progressão da Doença , Perfilação da Expressão Gênica , Recombinação Homóloga , Humanos , Imuno-Histoquímica , Masculino , Camundongos Endogâmicos BALB C , Análise Serial de Tecidos
13.
Chem Phys Lipids ; 213: 39-47, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29550143

RESUMO

Liposomes can achieve a controlled release and an improved bioavailability of water- insoluble drug with minimized side effects. Paclitaxel is an efficient anticancer drug for the treatment of various cancers. However, paclitaxel has a solubility of 0.5 mg/L in water and a low bioavailability of 6.5%. Moreover, paclitaxel is a substrate for p-glycoprotein, which shows a decreased accumulation of drug within the cancer cell expressed by a p-glycoprotein. Therefore, the purpose of this study is to prepare a paclitaxel-loaded liposome and evaluate the effect of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) as an inhibitor of p-glycoprotein on the paclitaxel-loaded liposome. The paclitaxel-loaded liposome and TPGS coated paclitaxel-loaded liposome had spherical vesicles, with mean particle size 184.9 ±â€¯18.45 nm with PDI 0.324 ±â€¯0.018 and 282.6 ±â€¯20.41 nm with PDI 0.269 ±â€¯0.013, respectively. Paclitaxel-loaded liposome and TPGS coated paclitaxel-loaded liposome showed a controlled and sustained release of PTX over 72 h. The cellular uptake of paclitaxel from TPGS coated paclitaxel-loaded liposome was a 3.56-fold increase for 2 h and 5.75-fold increase for 4 h compared to that from paclitaxel-loaded liposome in MCF-7/ADR cells, resulting in improved cytotoxicity against MCF-7/ADR cells. Western blot assay revealed the P-gp inhibitory effect of TPGS-coated PTX-liposome. In conclusion, TPGS coated liposome with a sustained releasing capability and the inhibitory effect of p-glycoprotein may be a promising carrier for future applications in cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/química , Lipossomos/química , Paclitaxel/química , Vitamina E/química , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/antagonistas & inibidores , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos Fitogênicos/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Liberação Controlada de Fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Células MCF-7 , Microscopia Confocal , Paclitaxel/farmacologia , Tamanho da Partícula , Polissorbatos/química , Solubilidade
14.
Mitochondrial DNA B Resour ; 3(1): 118-119, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33474088

RESUMO

Asarum sieboldii is a medicinal plant belonging to the Aristolochiaceae family. In this study, complete chloroplast genome sequence of A. sieboldii was characterized through de novo assembly with next generation sequencing data. The chloroplast genome is 193,356 bp long and has the stereotypical tripartite organization consisting of large single copy region and a pair of inverted repeats. The genome contains 78 protein-coding genes, 30 rRNA genes, and 4 tRNA genes. Phylogenetic analysis revealed that A. sieboldii has close relationship with Piper coenoclatum (Piperaceae, Piperales).

15.
Artigo em Inglês | MEDLINE | ID: mdl-26709548

RESUMO

We determined the complete chloroplast DNA sequence of Aconitum chiisanense Nakai, a rare Aconitum species endemic to Korea. The chloroplast genome is 155 934 bp in length and contains 4 rRNA, 30 tRNA, and 78 protein-coding genes. Phylogenetic analysis revealed that the chloroplast genome of A. chiisanense is closely related to that of A. barbatum var. puberulum. Sequence comparison with other Ranunculaceae chloroplasts identified a unique deletion in the rps16 gene of A. chiisanense chloroplast DNA that can serve as a molecular marker for species identification.


Assuntos
Aconitum/genética , Genes de Cloroplastos , Genoma de Cloroplastos , Filogenia , Sequência de Bases , DNA de Cloroplastos , Tamanho do Genoma , Genoma de Planta , Genômica , República da Coreia , Análise de Sequência de DNA
16.
Nat Commun ; 7: 12791, 2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27666543

RESUMO

Molecular classification of cancers into subtypes has resulted in an advance in our understanding of tumour biology and treatment response across multiple tumour types. However, to date, cancer profiling has largely focused on protein-coding genes, which comprise <1% of the genome. Here we leverage a compendium of 58,648 long noncoding RNAs (lncRNAs) to subtype 947 breast cancer samples. We show that lncRNA-based profiling categorizes breast tumours by their known molecular subtypes in breast cancer. We identify a cohort of breast cancer-associated and oestrogen-regulated lncRNAs, and investigate the role of the top prioritized oestrogen receptor (ER)-regulated lncRNA, DSCAM-AS1. We demonstrate that DSCAM-AS1 mediates tumour progression and tamoxifen resistance and identify hnRNPL as an interacting protein involved in the mechanism of DSCAM-AS1 action. By highlighting the role of DSCAM-AS1 in breast cancer biology and treatment resistance, this study provides insight into the potential clinical implications of lncRNAs in breast cancer.


Assuntos
Neoplasias da Mama/metabolismo , RNA Longo não Codificante/metabolismo , Antineoplásicos Hormonais/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Invasividade Neoplásica , RNA Longo não Codificante/genética , Receptores de Estrogênio , Tamoxifeno/farmacologia
17.
Neoplasia ; 18(1): 1-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26806347

RESUMO

A recent phase III trial of the MET kinase inhibitor cabozantinib in men with castration-resistant prostate cancer (CRPC) failed to meet its primary survival end point; however, most men with CRPC have intact androgen receptor (AR) signaling. As previous work supports negative regulation of MET by AR signaling, we hypothesized that intact AR signaling may have limited the efficacy of cabozantinib in some of these patients. To assess the role of AR signaling on MET inhibition, we first performed an in silico analysis of human CRPC tissue samples stratified by AR signaling status ((+) or (-)), which identified MET expression as markedly increased in AR(-) samples. In vitro, AR signaling inhibition in AR(+) CRPC models increased MET expression and resulted in susceptibility to ligand (HGF) activation. Likewise, MET inhibition was only effective in blocking cancer phenotypes in cells with MET overexpression. Using multiple AR(+) CRPC in vitro and in vivo models, we showed that combined cabozantinib and enzalutamide (AR antagonist) treatment was more efficacious than either inhibitor alone. These data provide a compelling rationale to combine AR and MET inhibition in CRPC and may explain the negative results of the phase III cabozantinib study in CRPC. Similarly, the expression of MET in AR(-) disease, whether due to AR inhibition or loss of AR signaling, suggests potential utility for MET inhibition in select patients with AR therapy resistance and in AR(-) prostate cancer.


Assuntos
Antagonistas de Receptores de Andrógenos/farmacologia , Antineoplásicos/farmacologia , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-met/antagonistas & inibidores , Anilidas/farmacologia , Animais , Benzamidas , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Análise por Conglomerados , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Nitrilas , Feniltioidantoína/análogos & derivados , Feniltioidantoína/farmacologia , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/genética , Proteínas Proto-Oncogênicas c-met/genética , Piridinas/farmacologia , Receptores Androgênicos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Neoplasia ; 16(11): 900-8, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25425964

RESUMO

Long non-coding RNAs (lncRNAs) represent an emerging layer of cancer biology, contributing to tumor proliferation, invasion, and metastasis. Here, we describe a role for the oncogenic lncRNA PCAT-1 in prostate cancer proliferation through cMyc. We find that PCAT-1-mediated proliferation is dependent on cMyc protein stabilization, and using expression profiling, we observed that cMyc is required for a subset of PCAT-1-induced expression changes. The PCAT-1-cMyc relationship is mediated through the post-transcriptional activity of the MYC 3' untranslated region, and we characterize a role for PCAT-1 in the disruption of MYC-targeting microRNAs. To further elucidate a role for post-transcriptional regulation, we demonstrate that targeting PCAT-1 with miR-3667-3p, which does not target MYC, is able to reverse the stabilization of cMyc by PCAT-1. This work establishes a basis for the oncogenic role of PCAT-1 in cancer cell proliferation and is the first study to implicate lncRNAs in the regulation of cMyc in prostate cancer.


Assuntos
Regiões 3' não Traduzidas/genética , Proliferação de Células/genética , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante/genética , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteínas Proto-Oncogênicas c-myc/metabolismo , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Mol Cancer Res ; 12(8): 1081-7, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25030374

RESUMO

UNLABELLED: Long noncoding RNAs (lncRNA) have recently been associated with the development and progression of a variety of human cancers. However, to date, the interplay between known oncogenic or tumor-suppressive events and lncRNAs has not been well described. Here, the novel lncRNA, prostate cancer-associated transcript 29 (PCAT29), is characterized along with its relationship to the androgen receptor. PCAT29 is suppressed by DHT and upregulated upon castration therapy in a prostate cancer xenograft model. PCAT29 knockdown significantly increased proliferation and migration of prostate cancer cells, whereas PCAT29 overexpression conferred the opposite effect and suppressed growth and metastases of prostate tumors in chick chorioallantoic membrane assays. Finally, in prostate cancer patient specimens, low PCAT29 expression correlated with poor prognostic outcomes. Taken together, these data expose PCAT29 as an androgen-regulated tumor suppressor in prostate cancer. IMPLICATIONS: This study identifies PCAT29 as the first androgen receptor-repressed lncRNA that functions as a tumor suppressor and that its loss may identify a subset of patients at higher risk for disease recurrence. Visual Overview: http://mcr.aacrjournals.org/content/early/2014/07/31/1541-7786.MCR-14-0257/F1.large.jpg.


Assuntos
Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Proteínas Supressoras de Tumor/genética , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fenótipo , Neoplasias da Próstata/patologia
20.
Cancer Res ; 74(6): 1651-60, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24473064

RESUMO

Impairment of double-stranded DNA break (DSB) repair is essential to many cancers. However, although mutations in DSB repair proteins are common in hereditary cancers, mechanisms of impaired DSB repair in sporadic cancers remain incompletely understood. Here, we describe the first role for a long noncoding RNA (lncRNA) in DSB repair in prostate cancer. We identify PCAT-1, a prostate cancer outlier lncRNA, which regulates cell response to genotoxic stress. PCAT-1 expression produces a functional deficiency in homologous recombination through its repression of the BRCA2 tumor suppressor, which, in turn, imparts a high sensitivity to small-molecule inhibitors of PARP1. These effects reflected a posttranscriptional repression of the BRCA2 3'UTR by PCAT-1. Our observations thus offer a novel mechanism of "BRCAness" in sporadic cancers.


Assuntos
Proteína BRCA2/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias da Próstata/genética , RNA Longo não Codificante/genética , Reparo de DNA por Recombinação , Regiões 3' não Traduzidas , Animais , Antineoplásicos/farmacologia , Proteína BRCA2/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Masculino , Camundongos , Camundongos SCID , Ftalazinas/farmacologia , Piperazinas/farmacologia , Poli(ADP-Ribose) Polimerase-1 , Inibidores de Poli(ADP-Ribose) Polimerases , Poli(ADP-Ribose) Polimerases/metabolismo , Neoplasias da Próstata/metabolismo , Interferência de RNA , RNA Longo não Codificante/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...