Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (183)2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35695539

RESUMO

The benefits of renal sympathetic denervation (RDN) on blood pressure have been proved in a large number of clinical trials in recent years. However, the regulatory mechanism of RDN on hypertension remains elusive. Thus, it's essential to establish a simpler RDN model in mice. In this study, osmotic mini pumps filled with Angiotensin II were implanted in 14-week-old C57BL/6 mice. One week after the implantation of the mini-osmotic pump, a modified RDN procedure was performed on bilateral renal arteries of the mice using phenol. Age-sex-matched mice were given saline and served as sham group. Blood pressure was measured at baseline and every week subsequently for 21 days. Then, renal artery, abdominal aorta and heart were collected for histological examination using H&E and Masson staining. In this study, we present a simple, practical, repeatable, and standardized RDN model, which can control hypertension and alleviate cardiac hypertrophy. The technique can denervate peripheral renal sympathetic nerves without renal artery damage. Compared to previous models, the modified RDN facilitates the study of the pathobiology and pathophysiology of hypertension.


Assuntos
Angiotensina II , Hipertensão , Animais , Pressão Sanguínea , Denervação , Rim , Camundongos , Camundongos Endogâmicos C57BL , Artéria Renal/cirurgia , Simpatectomia/métodos
2.
Membranes (Basel) ; 12(6)2022 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-35736341

RESUMO

Short-chain chlorinated paraffins (SCCPs) were defined as persistent organic pollutants in 2017, and they can migrate and transform in the environment, accumulate in organisms, and amplify through the food chain. Although they pose a serious threat to environmental safety and human health, there are few papers on their removal. The current SCCP removal methods are expensive, require severe operating conditions, involve time-consuming biological treatment, and have poor removal specificities. Therefore, it is important to seek efficient methods to remove SCCPs. In this paper, a pressurized reactor was introduced, and the removal performance of SCCPs by Escherichia coli strain 2 was investigated. The results indicated that moderate pure oxygen pressurization promoted bacterial growth, but when it exceeded 0.15 MPa, the bacterial growth was severely inhibited. When the concentration of SCCPs was 20 mg/L, the removal rate of SCCPs was 85.61% under 0.15 MPa pure oxygen pressurization for 7 days, which was 25% higher than at atmospheric pressure (68.83%). In contrast, the removal rate was only 69.28% under 0.15 MPa air pressure. As the pressure continued to increase, the removal rate of SCCPs decreased significantly. The total amount of extracellular polymeric substances (EPS) increased significantly upon increasing the pressure, and the amount of tightly bound EPS (TB-EPS) was higher than that of loosely bound EPS (LB-EPS). The pressure mainly promoted the secretion of proteins in LB-EPS. Furthermore, an appropriate pure oxygen pressure of 0.15 MPa improved the dehydrogenase activity. The gas chromatography-mass spectrometry (GC-MS) results indicated that the degradation pathway possibly involved the cleavage of the C-Cl bond in SCCPs, which produced Cl-, followed by C-C bond breaking. This process degraded long-chain alkanes into short-chain alkanes. Moreover, the main degradation products detected were 2,4-dimethylheptane (C9H20), 2,5-dimethylheptane (C9H20), and 3,3-dimethylhexane (C8H18).

3.
Sci Total Environ ; 724: 138311, 2020 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-32272414

RESUMO

This study compared the membrane fouling mitigation in two novel types of biofilm membrane bioreactor coupled with a pre-anoxic tank (BF-AO-MBR)-namely a fixed biofilm membrane bioreactor (FB-MBR) with fiber bundle bio-carriers and a moving-bed biofilm membrane bioreactor (MB-MBR) with suspended bio-carriers-relative to an anoxic/oxic MBR (AO-MBR), at salinities ranging from zero to 60 g/L. The results showed that the FB-MBR mitigated membrane fouling to a greater degree than the MB-MBR and AO-MBR. During operation, the FB-MBR exhibited the lowest fouling development, with three membrane filtration cycles, while the AO-MBR and MB-MBR had 22 and nine cycles, respectively. The key fouling factor in all reactors was cake layer resistance (RC), which contributed to 89.61, 62.20, and 83.17% of the total fouling resistance (RT) in AO-MBR, FB-MBR and MB-MBR, respectively. Additionally, in the FB-MBR, the pore blocking resistance (30.07%) was also an important cause of fouling. Fiber bundle bio-carriers and suspended bio-carriers reduced the RT by 37.68% and 21.24% (mainly the RC) compared to that of AO-MBR. Furthermore, FB-MBR and MB-MBR caused a decrease of suspended biomass (80.14 and 15.90%, respectively), and the latter exhibited a higher sludge particle size than AO-MBR, possibly resulting in the cake layer decline. The studied BF-AO-MBRs further alleviated the fouling propensity by reducing the amount of soluble microbial product (SMP) and extracellular polymeric substances (EPS) under all salinity levels, especially the FB-MBR. Among the protein components, the amounts of tryptophan protein-like substance and aromatic protein-like substance were significantly lower in the FB-MBR compared to the AO-MBR and MB-MBR. Additionally, at 60 g/L salinity, the structure of the microbial community in the FB-MBR had a lower abundance of Bacteroidetes and more biomacromolecule degraders, which may have contributed to the moderation of membrane fouling.


Assuntos
Incrustação Biológica , Águas Residuárias , Biofilmes , Reatores Biológicos , Membranas Artificiais , Veículos Automotores , Esgotos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA