Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 11(10): 2420-2427, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38440861

RESUMO

Ion-sensing hydrogels exhibit electrical conductivity, softness, and mechanical and sensory properties akin to human tissue, rendering them an ideal material for mimicking human skin. In the realm of fabricating sensors for detecting human physiological activities, they present an ideal alternative to traditional rigid metal conductors. Nevertheless, achieving ionic hydrogels with outstanding tensile properties, toughness, ionic conductivity, and transport stability poses a significant challenge. This paper describes a simple method of forming a basic network by free radical polymerization of acrylamide, and then bacterial cellulose (BC) and 1-ethyl-3-methylimidazolium chloride ([EMIM]Cl) were introduced into the basic network. The polyhydrogen bonds and electrostatic interactions in the system gave the hydrogel notable tensile properties (3271 ± 37%), toughness (7.39 ± 0.13 MJ m-3), and high ultimate tensile stress (385.1 ± 7.2 kPa). In addition, the combination of BC and [EMIM]Cl collaboratively enhanced the mechanical properties and electrical conductivity. Ion sensing hydrogels have a wide operating strain range (≈1000%) and high sensitivity (gage factor (GF) = 11.85), and are therefore considered promising candidates for next-generation gel-based strain sensor platforms.


Assuntos
Celulose , Condutividade Elétrica , Hidrogéis , Líquidos Iônicos , Resistência à Tração , Dispositivos Eletrônicos Vestíveis , Celulose/química , Humanos , Líquidos Iônicos/química , Hidrogéis/química , Imidazóis/química , Monitorização Fisiológica/métodos , Monitorização Fisiológica/instrumentação
2.
Int J Biol Macromol ; 259(Pt 1): 129203, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38184031

RESUMO

Food safety is related to public health and environmental safety. Therefore, it is necessary to develop accurate and effective detection methods to assess food quality and safety. In this study, a pH-responsive functional film (BC/GA/FITC/PCA) was generated for the real-time and visual monitoring of shrimp freshness. Bacterial cellulose /Gelatin (BC/GA) was used as a film-forming matrix, and fluorescein isothiocyanate (FITC) and red cabbage (PCA) were used as the response signals. The addition of FITC and PCA increased the shading capacity (< 30 %) and antioxidant properties (22.8 %) of the films. WCA (82.73 ± 0.95°), WVP (1.48 × 10-11 g·cm/cm2·s·Pa) and OTR (2.42 × 10-15 cm3·cm/cm2·s·Pa) indicated that the film possessed water resistance and oxygen barrier properties. When exposed to daylight, the film underwent a color transition from purple to green as the ammonia concentration increased. In addition, the blue-green fluorescence of the films gradually increased and the detection limit was low (170 ppb). In particular, the change in film color caused by shrimp spoilage corresponded to the TVBN value. This study work provides a new strategy for controlling and monitoring food safety and has a wide range of applications in the fields of food-active packaging and smart packaging.


Assuntos
Gelatina , Isotiocianatos , Alimentos Marinhos , Fluoresceína-5-Isotiocianato , Celulose , Fluoresceína , Embalagem de Alimentos , Concentração de Íons de Hidrogênio , Antocianinas
3.
Int J Biol Macromol ; 260(Pt 2): 128940, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143050

RESUMO

This study provides a novel strategy for preparing bio-based antibacterial emulsions stabilized by cellulose nanocrystals (CNCs). Antibacterial ε-polylysine (ε-PL) with a positive charge was introduced into the aqueous phase to modulate the interfacial behavior of CNCs via electrostatic interactions. Pickering emulsions containing ε-PL/CNCs (ε-PL 0.07-0.1 g/L) had significantly better stability, larger emulsion ratio, smaller emulsion droplet diameter, and superior antibacterial ability than emulsions stabilized by CNCs alone. This could be attributed to the formation of a CNC-dense layer at the interface in the continuous phase caused by a reduction of electrostatic repulsion after adding ε-PL. This was confirmed by zeta potential measurements, rheological properties, and bio-freezing scanning electron microscopy. In addition, cinnamaldehyde was introduced into the oil phase to further improve the antibacterial properties of the emulsion, thereby avoiding easy evaporation into water. Our findings provide an innovative solution for preparing bio-based antibacterial emulsions stabilized by ε-PL/CNCs, which will benefit the development of food, medicine, and cosmetic lotions.


Assuntos
Celulose , Nanopartículas , Celulose/química , Polilisina , Emulsões/química , Nanopartículas/química , Antibacterianos/farmacologia , Água/química
4.
Carbohydr Polym ; 321: 121310, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37739507

RESUMO

Self-powered sensors that do not require external power sources are crucial for next-generation wearable electronics. As environment-friendly ionic thermoelectric hydrogels can continuously convert the low-grade heat of human skin into electricity, they can be used in intelligent human-computer interaction applications. However, their low thermoelectric output power, cycling stability, and sensitivity limit their practical applications. This paper reports a 2,2,6,6-tetramethylpiperidine-1-oxyl radical (TEMPO)-oxidized carboxylated bacterial cellulose (TOBC) coordination double-network ionic thermoelectric hydrogel with lithium bis(trifluoromethane) sulfonimide (LiTFSI) as an ion provider for thermodiffusion, as LiTFSI exhibits excellent thermoelectric properties with a maximum power output of up to 538 nW at a temperature difference of 20 K. The interactions between the ions and the hydrogel matrix promote the selective transport of conducting ionic ions, producing a high Seebeck coefficient of 11.53 mV K-1. Hydrogen bonding within the polyacrylamide (PAAm) network and interactions within the borate ester bond within the TOBC confer excellent mechanical properties to the hydrogel such that the stress value at a tensile deformation of 3100 % is reaches 0.85 MPa. The combination of the high ionic thermovoltage and excellent mechanical properties ionic thermoelectric hydrogels provides an effective solution for the design and application of self-powered sensors based on hydrogels.


Assuntos
Ácidos Carboxílicos , Ésteres , Humanos , Celulose , Hidrogéis , Íons
5.
Polymers (Basel) ; 15(18)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37765658

RESUMO

Polyimide (PI) is widely deployed in space missions due to its good radiation resistance and durability. The influences from radiation and harsh temperatures should be carefully evaluated during the long-term service life. In the current work, the coupled thermal and radiation effects on the mechanical properties of PI samples were quantitatively investigated via experiments. At first, various PI specimens were prepared, and electron irradiation tests were conducted with different fluences. Then, both uniaxial tensile tests at room temperature and the dynamic mechanical analysis at varied temperatures of PI specimens with and without electron irradiation were performed. After that, uniaxial tensile tests at low and high temperatures were performed. The fracture surface of the PI film was observed using a scanning electron microscope, and its surface topography was measured using atomic force microscopy. In the meantime, the Fourier-transform infrared spectrum tests were conducted to check for chemical changes. In conclusion, the tensile tests showed that electron irradiation has a negligible effect during the linear stretching period but significantly impacts the hardening stage and elongation at break. Moreover, electron irradiation slightly influences the thermal properties of PI according to the differential scanning calorimetry results. However, both high and low temperatures dramatically affect the elastic modulus and elongation at break of PI.

6.
Medicina (Kaunas) ; 59(8)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37629739

RESUMO

Background: Oral lichen planus (OLP) is an infrequent autoimmune disease of the oral mucosa, which affects up to 2% of the world population. An investigation of Tripterygium wilfordii's mechanism of action for treating OLP was conducted, and a theoretical basis was provided for improving current treatment regimens. Materials and Methods: We used a network pharmacological approach to gain insight into the molecular mechanism of Tripterygium wilfordii in the treatment of OLP. Then, potential protein targets between Tripterygium wilfordii and OLP were analyzed through a drug-target network. This was followed by KEGG enrichment analysis and Gene Ontology (GO) classification. Finally, for molecular docking, AutoDock Vina was used. Results: A protein-protein interaction (PPI) network was constructed by analyzing the common targets of a total of 51 wilfordii-OLP interactions from different databases. The GO and KEGG enrichment analyses showed that the treatment of OLP with Tripterygium wilfordii mainly involves lipopolysaccharide response, bacterial molecular response, positive regulation of cytokine production, and leukocyte proliferation, and the signaling pathways mainly include the AGE-RAGE, NF-κB, Toll-like receptor, IL-17, HIF-1, and TNF signaling pathways. The molecular docking results showed that ß-sitosterol, kaempferol, hederagenin, and triptolide have a higher affinity for AKT1, TNF, CASP3, and PTGS2, respectively. Based on the CytoNCA analysis of common targets, 19 key targets, including AKT1, TNF, VEGFA, STAT3, CXCL8, PTGS2, TP53, and CASP3, and their connections were identified. Conclusions: Preliminarily, this study reveals that Tripterygium wilfordii interferes with OLP by interacting with multiple targets through multiple accesses, as validated by molecular docking.


Assuntos
Líquen Plano Bucal , Tripterygium , Humanos , Simulação de Acoplamento Molecular , Caspase 3 , Farmacologia em Rede , Ciclo-Oxigenase 2 , Líquen Plano Bucal/tratamento farmacológico
7.
Environ Sci Pollut Res Int ; 30(41): 93986-93997, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37518842

RESUMO

The adsorption performance of layered double hydroxides (LDHs) is limited owing to self-aggregation. To avoid this and effectively control the eutrophication of water bodies, biochar (BC) was synthesized, herein, by pyrolyzing waste sheep manure at 500°C, and Ca-Al-LDHs were loaded on the surface via a coprecipitation method to obtain Ca-Al-LDHs-BC(CA) composites with varying LDH contents. The fitted maximum adsorption capacities of the CA-5%, CA-10%, CA-15%, and CA-20% samples (corresponding to samples with 5%, 10%, 15%, and 20% LDHs, respectively) were 10.21, 16.14, 22.40, and 28.47 mg g-1, which were (when converted into metal proportions) 1.48, 1.23, 1.15, and 1.13 times of that of single hydrotalcite, respectively. The double-layer model was fitted using the Levenberg-Marquardt iterative algorithm, which when combined with the characterization results, confirmed that the adsorption of phosphate ions by CA-BC occurred via the double-layer adsorption mechanism. Two types of direct adsorption were observed: ion exchange, which resulted in first-layer adsorption, and ligand exchange, which resulted in second-layer adsorption, with first-layer adsorption accounting for a higher proportion. This double-layer adsorption mechanism showed that LDHs-BC could achieve higher ligand exchange performance compared to that achieved using only LDHs.


Assuntos
Fosfatos , Poluentes Químicos da Água , Animais , Ovinos , Adsorção , Troca Iônica , Ligantes , Hidróxidos , Poluentes Químicos da Água/análise
8.
Polymers (Basel) ; 15(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299235

RESUMO

With the fast development of modern industry, heavy metal contaminant became more severe. How to remove heavy metal ions in water in a green and efficient way is a prominent problem in current environmental protection. The adsorption of cellulose aerogel as a novel heavy metal removal technology has many advantages, including abundant resources, environmental friendly, high specific surface, high porosities and without second pollution, which means it has a wide application prospect. Here, we reported a self-assembly and covalent crosslinking strategy to prepare elastic and porous cellulose aerogels using PVA and graphene and cellulose as precursor. The resulting cellulose aerogel had a low density of 12.31 mg cm-3 and excellent mechanical properties, which can recover to its initial form at 80% compressive strain. Meanwhile, the cellulose aerogel had strong adsorption capacity of Cu2+ (80.12 mg g-1), Cd2+ (102.23 mg g-1), Cr3+ (123.02 mg g-1), Co2+ (62.38 mg g-1), Zn2+ (69.55 mg g-1), and Pb2+ (57.16 mg g-1). In addition, the adsorption mechanism of the cellulose aerogel was investigated using adsorption kinetics and adsorption isotherm, and the conclusion was that the adsorption process was mainly controlled by chemisorption mechanism. Therefore, cellulose aerogel, as a kind of green adsorption material, has a very high application potential in future water treatment applications.

9.
Carbohydr Polym ; 314: 120958, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173052

RESUMO

Thermocells (TECs) are eco-friendly and ideal power-generation devices that sustainably convert waste heat into electricity to power wearable electronics. However, their poor mechanical properties, limited operating temperature, and low sensitivity limit their practical application. Hence, K3/4Fe(CN)6 and NaCl thermoelectric materials were introduced into a bacterial cellulose-reinforced polyacrylic acid double-network structure and permeated into a glycerol (Gly)/water binary solvent to prepare an organic thermoelectric hydrogel. The resulting hydrogel had a tensile strength of approximately 0.9 MPa and a stretched length of approximately 410 %; moreover, it worked stably even in the stretched/twisted state. Owing to the introduction of Gly and NaCl, the as-prepared hydrogel exhibited excellent freezing tolerance (- 22 °C). In addition, the TEC also demonstrated excellent sensitivity (~13 s). Good environmental stability and high sensitivity make this hydrogel TEC a promising candidate for thermoelectric power-generation/temperature-monitoring systems.

10.
Int J Biol Macromol ; 242(Pt 1): 124499, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37080402

RESUMO

In this study, we prepared spherical cellulose nanocrystals (S-CNCs) and stabilized n-hexadecane Pickering emulsions in conjunction with graphene oxide (GO), exploring the interaction between S-CNCs and GO in the emulsions. Both S-CNCs and GO are amphiphilic and synergistically stabilize Pickering emulsions by adhering to the surface of oil droplets and within the emulsion space through hydrogen bonding. GO's two-dimensional sheets assemble into a 3D network structure, further improving the stability of Pickering emulsions. Consequently, the stability of Pickering emulsions can be adjusted by altering the S-CNCs/GO ratio, modifying the spatial distribution relationship of stabilizers in the emulsions. At an S-CNCs concentration of 1 g/L and a GO concentration of 3 g/L, the Pickering emulsion demonstrated excellent stability and exhibited no delamination after 31 days of storage. Thus, the S-CNCs/GO combination serves as an effective Pickering emulsion stabilizer, utilizing the synergistic effect between the two components.


Assuntos
Grafite , Nanopartículas , Celulose/química , Emulsões/química , Nanopartículas/química , Grafite/química
11.
J Plant Physiol ; 285: 153982, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37105043

RESUMO

Nitrogen (N) plays an important role in the development of plants, with N application having been shown to accelerate flowering of cultivated plants. However, the mechanism of optimal N conditions to accelerate flowering of short-day plants is still unclear. In this study, it was found that Chrysanthemum vestitum is a typical short-day plant like most chrysanthemum varieties, and its flowering must go through a short-day induction stage. Further observations on the growth of C. vestitum showed that the N range of external application for growth was limited to between 0.25 and 2.50 mM. The results showed that, under optimal N (ON, 1.25 mM) conditions, the plants increased rapidly and flowering time was advanced; under high N (HN, 2.50 mM) or limited N (LN, 0.25 mM) conditions, the growth of plants were inhibited and flowering time was delayed. On the basis of transcriptome data, analysis of differentially expressed genes (DEGs) revealed that the floral-related genes B-box19 (BBX19), Cryptochromes (CRYs), CONSTANS-like (COLs), nitrate transporter protein (NRT), and NIN-like protein (NLP) could respond to N availability. Most of the genes in the photoperiod pathway were upregulated by ON conditions, and their expression was inhibited under HN and LN conditions. Our findings indicated that N could affect flowering by regulating the transcription levels of genes that are involved mainly in the photoperiod pathway. These candidate genes provide important clues for the subsequent analysis of the mechanism of N-induced flowering of short-day plants, and provide a possibility to improve the flowering of chrysanthemum by molecular breeding.


Assuntos
Chrysanthemum , Flores , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fotoperíodo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica de Plantas
12.
Sci Total Environ ; 871: 161989, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36754317

RESUMO

In this work, fluorescent adsorbents that can efficiently detect and remove Pb2+ were developed by integrating the designed amino-modified carbon quantum dots and carboxyl-modified collagen. The adsorption properties of the fluorescent adsorbent were further optimized and analyzed using a series of response surface experiments. The maximum adsorption concentration for Pb2+ was 183 mg.g-1. The adsorption isotherms fit well with the Langmuir model, and the adsorption kinetics fit with the pseudo-second-order model. The emission intensity of the fluorescent adsorbent gradually decreased with the increase of the concentration of Pb2+, and had a good linear correlation. In addition, the mechanism of detection and removal of Pb2+ by fluorescent adsorbents was further demonstrated. The novel three-dimensional structured fluorescent aerogel can be used as a promising adsorbent with good adsorption concentration and sensing ability for Pb2+, which shows great prospects in wastewater.

13.
Carbohydr Polym ; 294: 119789, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35868797

RESUMO

Reasonable and efficient utilization of low-grade thermal energy in nature is the choice for sustainable energy development. We demonstrate a bacterial cellulose (BC) hydrogel thermocell (TEC) based on BC electrolyte combined with carbon fiber paper and copper composite electrode sheets. The large specific surface area of carbon fiber paper provides a large number of active sites for thermoelectric ions, which drives the redox reaction inside the electrolyte and stimulates the chemical reaction between the electrolyte and the electrode. The combination of the two chemical reactions significantly improves the thermoelectric performance of the thermocell. The thermopower of the BC-TEC reaches 5.9 mV·K-1 at a temperature difference of 50 K. The TEC consisting of 6-units in series produces an open-circuit voltage of about 2 V and a peak power of 535 µW. The TEC shows new potential and prospects in ambient thermoelectric energy conversion by rationally designing the power generation principle.


Assuntos
Celulose , Temperatura Alta , Bactérias/química , Fibra de Carbono , Celulose/química , Eletrodos , Hidrogéis
14.
Polymers (Basel) ; 14(8)2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35458340

RESUMO

Disposable paper cups are widely used in daily life and most of them are landfilled or incinerated after use, resulting in a serious ecological hazard and significant waste of resources due to the usage of thin polyethylene (PE) as their inner coating. Hence, converting these common solid domestic wastes into high-value added materials is attractive and meaningful. In this study, transparent cellulose-based films were achieved from old bamboo-based disposable paper cups after pretreatment through using the room ionic liquid 1-allyl-3-methylimidazolium chloride (AmimCl) as solvent. The cellulose-based film with a dense texture demonstrated a relatively nice mechanical and UV-shielding performances, and its tensile strength was as high as 48 MPa, much higher than that of commercial polyethylene (PE, 12 MPa) film. Thus, the resultant cellulose-based film showed a great potential in the packaging field. Besides, the flexible paper plastic composites (PPC) were also fabricated from the rest thin PE coating with the stuck fibers, and it was found that PPC showed excellent mechanical property and hydrophobicity. Consequently, a feasible and eco-friendly process of recycling and reusing waste disposable paper cups was developed to achieve a complete utilization and valorization of waste disposable paper cups.

15.
ACS Appl Bio Mater ; 5(5): 2193-2201, 2022 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-35438952

RESUMO

Gelatin (GH) is a natural polymer material with unique physical, chemical, and biological properties that render it a good base material for biomedical material production. Herein, Ag nanoparticles (NPs) were loaded onto a waterborne polyurethane-GH composite (WPU-g-GH) to prepare a GH-based nanocomposite (AgNP/WPU-g-GH) films). The prepared nanocomposite films were characterized using several analyses including Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, X-ray diffraction, transmission emission microscopy, mechanical strength tests, and other analyses. The results demonstrated that the nanocomposite films had high mechanical strength, good thermal stability, and controllable biodegradability. In particular, when the AgNP loading content was 0.03%, the tensile strength, elongation at break, and average particle size of the nanocomposite film reached 45.13 MPa, 476.04%, and 13.02978 ± 1.64406 nm, respectively. Disk diffusion and cytotoxicity analyses revealed that the nanocomposite films exhibited significant antibacterial activity against Gram-negative and Gram-positive bacteria without affecting the cell viability of fibroblasts. These findings indicate that the nanocomposite films with high mechanical strength and antibacterial activity could be used for wound management, tissue adhesion, and biomaterial surface coating.


Assuntos
Nanopartículas Metálicas , Nanocompostos , Antibacterianos/farmacologia , Materiais Biocompatíveis/química , Gelatina/farmacologia , Nanopartículas Metálicas/química , Nanocompostos/química , Prata/farmacologia
16.
Carbohydr Polym ; 280: 119036, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35027119

RESUMO

Wood is one of the most abundant materials in nature, with excellent mechanical properties and anisotropy. Its main component, cellulose has excellent dispersion properties and biocompatibility after nano-treatment, which has aroused the interest of researchers. Therefore, this study prepared a thermoelectric aerogel based on carboxylated nanocellulose fiber and carbon nanotube, and made it have a wood-like anisotropic structure through directional freezing technology. The aerogel exhibited excellent mechanical properties and had the stress of up to 152 kPa when compressed at 90%. It also exhibited low thermal conductivity (0.03-0.08 W/mK) and density (7.5 mg/cm3). When the device was at a temperature difference of 30 K, the single output power was 0.23 nW. This work confirmed the dispersion effect of carboxylated nanocellulose fiber on carbon nanotube, and the enhancement of the wood-like structure on thermoelectric generators. It provided new ideas and solutions for the construction of thermoelectric devices.


Assuntos
Celulose Oxidada , Condutividade Elétrica , Nanofibras , Nanotubos de Carbono , Condutividade Térmica , Anisotropia , Eletricidade , Géis , Temperatura Alta , Estresse Mecânico , Madeira
17.
ACS Appl Mater Interfaces ; 14(3): 3792-3808, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35037458

RESUMO

Excessive bleeding in traumatic hemorrhage is the primary concern for natural wound healing and the main reason for trauma deaths. The three-dimensional (3D) bioprinting of bioinks offers the desired structural complexity vital for hemostasis activity and targeted cell proliferation in rapid and controlled wound healing. However, it is challenging to develop suitable bioinks to fabricate specific 3D scaffolds desirable in wound healing. In this work, a 3D composite scaffold is designed using bioprinting technology and synergistic hemostasis mechanisms of cellulose nanofibrils (TCNFs), chitosan, and casein to control blood loss in traumatic hemorrhage. Bioinks that consist of casein bioconjugated TCNF (with a casein content of 104.5 ± 34.1 mg/g) using the carbodiimide cross-linker chemistry were subjected to bioprinting for customizable 3D scaffold fabrication. Further, the 3D composite scaffolds were in situ cross-linked using a green ionic complexation approach. The covalent conjugation among TCNF, casein, and chitosan was confirmed by Fourier transform infrared (FTIR) spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and X-ray diffraction (XRD) studies. The in vitro hemostasis activity of the 3D composite scaffold was analyzed by a human thrombin-antithrombin (TAT) assay and adsorption of red blood cells (RBCs) and platelets. The 3D composite scaffold had a better swelling behavior and a faster whole blood clotting rate at each time point than the 3D TCNF scaffold and commercial cellulose-based dressings. The TAT assay demonstrated that the 3D composite scaffold could form a higher content of thrombin (663.29 pg/mL) and stable blood clot compared to a cellulosic pad (580.35 pg/mL), 3D TCNF (457.78 pg/mL), and cellulosic gauze (328.92 pg/mL), which are essential for faster blood coagulation. In addition, the 3D composite scaffold had a lower blood clotting index (23.34%) than the 3D TCNF scaffold (41.93%), suggesting higher efficiencies for RBC entrapping to induce blood clotting. The in vivo cytocompatibility was evaluated by a 3D cell culture study, and results showed that the 3D composite scaffold could promote growth and proliferation of NIH 3T3 fibroblast cells, which is vital for wound healing. Cellulase-based in vitro deconstruction of the 3D composite scaffold showed significant weight loss (80 ± 5%) compared to the lysozyme hydrolysis (22 ± 5%) after 28 days of incubation, suggesting the biodegradation potential of the composite scaffold. In conclusion, this study proposes efficient prospects to develop a 3D composite scaffold from bioprinting of TCNF-based bioinks that can accelerate blood clotting and wound healing, suggesting its potential application in reducing blood loss during traumatic hemorrhage.


Assuntos
Materiais Biocompatíveis/farmacologia , Caseínas/farmacologia , Celulose/farmacologia , Nanofibras/química , Impressão Tridimensional , Cicatrização/efeitos dos fármacos , Materiais Biocompatíveis/química , Caseínas/química , Celulose/química , Humanos , Teste de Materiais , Alicerces Teciduais/química
18.
ACS Appl Mater Interfaces ; 14(2): 3165-3175, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-34994532

RESUMO

Humidity sensors have been widely used for humidity monitoring in industry and agriculture fields. However, the rigid structure, nondegradability, and large dimension of traditional humidity sensors significantly restrict their applications in wearable fields. In this study, a flexible, strong, and eco-friendly bacterial cellulose-based humidity sensor (BPS) was fabricated using a two-step method, involving solvent evaporation-induced self-assembly and electrolyte permeation. Rapid evaporation of organic solvent induces the formation of nanopores of the bacterial cellulose (BC) surface and promotes structural densification. Furthermore, the successful embedding of potassium hydroxide into the sophisticated network of BC effectively enhanced the sensing performance of BPS. The BPS exhibits an excellent humidity sensing response of more than 103 within the relative humidity ranging from 36.4 to 93% and strong (66.4 MPa) and high flexibility properties owing to the ultrafine fiber network and abundant hydrophilic functional groups of BC. Besides being strong and thin, BPS is also highly flexible, biodegradable, and humidity-sensitive, making it a potential candidate in wearable electronics, human health monitoring, and noncontact switching.


Assuntos
Materiais Biocompatíveis/química , Técnicas Biossensoriais , Celulose/química , Gluconacetobacter xylinus/química , Umidade , Dispositivos Eletrônicos Vestíveis , Configuração de Carboidratos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais
19.
Carbohydr Polym ; 278: 118962, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34973777

RESUMO

Degradable bio-based materials have been widely considered as functional coatings, however, it is a great challenge to fabricate biodegradable coatings with high barrier, water- and oil- resistance. In this work, such coatings were fabricated by using collagen fibers (CF), sodium alginate (SA), and polyvinyl butyral (PVB). CF and SA were mixed evenly and coated on Ca2+ pretreated filter paper. It was mainly due to the electrostatic adsorption between collagen fibers and sodium alginate, and the crosslinking between the adsorption products and Ca2+. By coating PVB solution, the barrier performance was further improved. Notably, the composite exhibited excellent water vapor resistance (48 g/m2·24 h), water resistance (31 g/m2), oil resistance (kit rating: 12/12) and good mechanical properties. This degradable, environmentally friendly, and simple composite paper method has excellent barrier properties, mechanical properties and fluorine-free properties, and will have many applications in the food and packaging fields.


Assuntos
Alginatos/química , Materiais Revestidos Biocompatíveis/química , Colágeno/química , Polivinil/química , Configuração de Carboidratos , Óleos/química , Água/química
20.
Carbohydr Polym ; 277: 118835, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34893252

RESUMO

The effect of three nanocellulose (various in crystalline allomorph and morphology) on lipid in vitro gastrointestinal digestibility was investigated. Corn oil-in-water emulsions were prepared by CNCs-I, CNCs-II and CNFs respectively. The variations of droplets diameter D[4,3], zeta potential, and microstructure were measured during gastrointestinal digestion (mouth, stomach and small intestine), and the free fatty acid (FFA) released in the small intestine phase were examined. The FFA-released test results indicated that both crystalline allomorph and morphology of nanocellulose affected the degree of lipid digestion, especially the morphology. FFA released amount was ranked in the order of CNCs-I (56.60%), CNCs-II (48.67%) and CNFs (28.21%). This is mainly due to the difference in the self-assembly behavior of nanocellulose at the interface. Our findings provide an innovative solution that using nanocellulose as food-grade particle stabilizer to modulate the digestion of Pickering emulsified lipids, which would benefit the development of given functional foods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...