Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(21): e2307635, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105336

RESUMO

The designed synthesis of a crystalline azulene-based covalent organic framework (COF-Azu-TP) is presented and its photothermal property is investigated. Azulene, a distinctive 5-7 fused ring non-benzenoid aromatic compound with a large intramolecular dipole moment and unique photophysical characteristics, is introduced as the key feature in COF-Azu-TP. The incorporation of azulene moiety imparts COF-Azu-TP with broad-spectrum light absorption capability and interlayer dipole interactions, which makes COF-Azu-TP a highly efficient photothermal conversion material. Its polyurethane (PU) composite exhibits a solar-to-vapor conversion efficiency (97.2%) and displays a water evaporation rate (1.43 kg m-2 h-1) under one sun irradiation, even at a very low dosage of COF-Azu-TP (2.2 wt%). Furthermore, COF-Azu-TP is utilized as a filler in a polylactic acid (PLA)/polycaprolactone (PCL) composited shape memory material, enabling rapid shape recovery under laser stimulation. A comparison study with a naphthalene-based COF isomer further emphasizes the crucial role of azulene in enhancing photothermal conversion efficiency. This study demonstrates the significance of incorporating specific building blocks into COFs for the development of functional porous materials with enhanced properties, paving the way for future applications in diverse fields.

2.
Chem Commun (Camb) ; 59(17): 2461-2464, 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36752113

RESUMO

We herein report a new approach to converting an amorphous covalent organic polymer to a crystalline heteropore covalent organic framework (COF), which is promoted by using an additive for structure repair. This provides a new method for the construction of COFs from cross-linked polymers.

3.
Angew Chem Int Ed Engl ; 61(25): e202202912, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35384234

RESUMO

Covalent organic frameworks (COFs) featuring permanent porosity, designable topologies, and tailorable functionalities have attracted great interest in the past two decades. Developing efficient modular approaches to rationally constructing COFs from a set of molecules via covalent linking has been long pursued. Herein, we report a facile one-pot strategy to prepare COFs via an irreversible Suzuki coupling reaction followed by a reversible Schiff's base reaction without the need for intermediate isolation. Gram-scale ordered frameworks with kgm topology and rich porosities can be obtained by using diamino-aryl halide and dialdehyde aryl-borate compounds as monomers. The resultant microporous CR-COFs were used for efficient C2 H4 /C3 H6 separation. This strategy reduces the waste generated and efforts consumed by stepwise reactions and relative purification processes, making the large-scale syntheses of stable COFs feasible. Moreover, it offers a novel modular approach to designing COF materials.

4.
J Am Chem Soc ; 144(3): 1138-1143, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35038262

RESUMO

Amide-linked covalent organic frameworks (amide COFs) possess enormous potentials in practical applications benefiting from their high stability and polyamide structures. However, they suffer from very limited accessibility. Herein, we report a new linkage conversion method to rapidly synthesize crystalline amide COFs through oxidation of imine linkages in their corresponding imine-linked frameworks with KHSO5 as an oxidant under very mild conditions. This synthetic strategy is general, facile, efficient, and scalable, as demonstrated by the procedure of simply stirring mixtures of imine-linked COFs (seven examples) and KHSO5 in anhydrous dimethylformamide for several hours to complete the conversions and gram-scale synthesis. The high efficiency of this approach enables facile production of amide COFs from widely available imine-linked COFs, which lays the foundation for exploring practical applications of this unique type of polyamide material.

5.
ACS Appl Mater Interfaces ; 12(31): 34990-34998, 2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32658445

RESUMO

Lithium-sulfur (Li-S) batteries have recently become a research hotspot because of their tempting theoretical capacity and energy density. Nevertheless, the notorious shuttle of polysulfides hinders the advancement of Li-S batteries. Herein, a two-dimensional covalent organic framework (COF) with extended π-conjugated units has been designed, synthesized, and used as sulfur recipients with 88.4 wt % in loading. The COF offers an elaborate platform for sufficient Li-S redox reactions with almost theoretical capacity release (1617 mA h g-1 at 0.1 C), satisfactory rate capability, and intensively traps polysulfides for a decent Coulombic efficiency (ca. 98.0%) and extremely low capacity decay (0.077% per cycle after 528 cycles at 0.5 C). The structural factors of the COF on the high-performance batteries are revealed by density functional theory calculations to be the high degrees of conjugation and proper interlayer space. This work not only demonstrates the great potential of COFs as highly efficient sulfur recipients but also provides a viable guidance for further design of COF materials to tackle shuttling issues toward active materials in electrochemical energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...