Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Int Med Res ; 48(9): 300060520959478, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32993395

RESUMO

OBJECTIVE: To detect the expression of CEA-related cell adhesion molecule 5 (CEACAM5) in non-small-cell lung cancer (NSCLC) and explore its function in the progression and development of NSCLC. METHODS: qRT-PCR and immunohistochemistry were performed to detect CEACAM5 expression in human NSCLC tissues and cell lines. The correlation between CEACAM5 expression and the clinicopathological features of patients with NSCLC was also investigated. MTT, colony formation, wound healing, and immunoblot assays were performed to detect the functions of CEACAM5 in NSCLC cells in vitro, and immunoblotting was used to detect the effects of CEACAM5 on p38-Smad2/3 signaling. RESULTS: CEACAM5 expression was elevated in human NSCLC tissues and cells. We further found that CEACAM expression was correlated with clinicopathological features including T division, lymph invasion, and histological grade in patients with NSCLC. The in vitro assays confirmed that CEACAM5 depletion inhibited the proliferation and migration of NSCLC cells by activating p38-Smad2/3 signaling. We verified the involvement of CEACAM5 in the suppression of NSCLC tumor growth in mice. CONCLUSION: CEACAM5 stimulated the progression of NSCLC by promoting cell proliferation and migration in vitro and in vivo. CEACAM5 may serve as a potential therapeutic target for the treatment of NSCLC.


Assuntos
Antígeno Carcinoembrionário , Carcinoma Pulmonar de Células não Pequenas , Proteínas Ligadas por GPI , Neoplasias Pulmonares , Animais , Carcinoma Pulmonar de Células não Pequenas/genética , Moléculas de Adesão Celular/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/genética , Camundongos
2.
Plant Physiol ; 181(2): 743-761, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31350362

RESUMO

Plants cope with aluminum (Al) toxicity by secreting organic acids (OAs) into the apoplastic space, which is driven by proton (H+) pumps. Here, we show that mutation of vacuolar H+-translocating adenosine triphosphatase (H+-ATPase) subunit a2 (VHA-a2) and VHA-a3 of the vacuolar H+-ATPase enhances Al resistance in Arabidopsis (Arabidopsis thaliana). vha-a2 vha-a3 mutant plants displayed less Al sensitivity with less Al accumulation in roots compared to wild-type plants when grown under excessive Al3+ Interestingly, in response to Al3+ exposure, plants showed decreased vacuolar H+ pump activity and reduced expression of VHA-a2 and VHA-a3, which were accompanied by increased plasma membrane H+ pump (PM H+-ATPase) activity. Genetic analysis of plants with altered PM H+-ATPase activity established a correlation between Al-induced increase in PM H+-ATPase activity and enhanced Al resistance in vha-a2 vha-a3 plants. We determined that external OAs, such as malate and citrate whose secretion is driven by PM H+-ATPase, increased with PM H+-ATPase activity upon Al stress. On the other hand, elevated secretion of malate and citrate in vha-a2 vha-a3 root exudates appeared to be independent of OAs metabolism and tolerance of phosphate starvation but was likely related to impaired vacuolar sequestration. These results suggest that coordination of vacuolar H+-ATPase and PM H+-ATPase dictates the distribution of OAs into either the vacuolar lumen or the apoplastic space that, in turn, determines Al tolerance capacity in plants.


Assuntos
Alumínio/toxicidade , Arabidopsis/metabolismo , Ácidos Carboxílicos/metabolismo , Raízes de Plantas/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Alumínio/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Pirofosfatase Inorgânica/metabolismo , Transportadores de Ânions Orgânicos/metabolismo , Raízes de Plantas/efeitos dos fármacos , ATPases Vacuolares Próton-Translocadoras/genética
3.
Plant Physiol ; 179(2): 640-655, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30552198

RESUMO

Vacuolar storage of phosphate (Pi) is essential for Pi homeostasis in plants. Recent studies have identified a family of vacuolar Pi transporters, VPTs (PHT5s), responsible for vacuolar sequestration of Pi. We report here that both VPT1 and VPT3 contribute to cytosol-to-vacuole Pi partitioning. Although VPT1 plays a predominant role, VPT3 is particularly important when VPT1 is absent. Our data suggested that the vpt1 vpt3 double mutant was more defective in Pi homeostasis than the vpt1 single mutant, as indicated by Pi accumulation capacity, vacuolar Pi influx, subcellular Pi allocation, and plant adaptability to changing Pi status. The remaining member of the VPT family, VPT2 (PHT5;2), did not appear to contribute to Pi homeostasis in such assays. Particularly interesting is the finding that the vpt1 vpt3 double mutant was impaired in reproductive development with shortened siliques and impaired seed set under sufficient Pi, and this phenotype was not found in the vpt1 vpt2 and vpt2 vpt3 double mutants. Measurements of Pi contents revealed Pi over-accumulation in the floral organs of vpt1 vpt3 as compared with the wild type. Further analysis identified excess Pi in the pistil as inhibitory to pollen tube growth, and thus seed yield, in the mutant plants. Reducing the Pi levels in culture medium or mutation of PHO1, a Pi transport protein responsible for root-shoot transport, restored the seed set of vpt1 vpt3 Thus, VPTs, through their function in vacuolar Pi sequestration, control the fine-tuning of systemic Pi allocation, which is particularly important for reproductive development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Flores/efeitos dos fármacos , Flores/metabolismo , Homeostase , Mutação , Proteínas de Transporte de Fosfato/genética , Fosfatos/toxicidade , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Vacúolos/metabolismo
4.
Plant Cell Physiol ; 59(7): 1345-1352, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-29420798

RESUMO

Arsenate [As(V)] is toxic to nearly all organisms. Soil-borne As(V) enters plant cells mainly through the plasma membrane-localized phosphate (Pi) transporter PHT1 family proteins due to its chemical similarity to Pi. We report here that VPT1, a major vacuolar phosphate transporter which contributes to vacuolar Pi sequestration, is associated with As(V) tolerance in Arabidopsis. vpt1 mutants displayed enhanced tolerance to As(V) toxicity, whereas plants overexpressing VPT1 were more sensitive to As(V) as compared with the wild-type plants. Measurements of arsenic content indicated that vpt1 mutants accumulated less arsenic and, in contrast, up-regulating VPT1 expression contributed to higher levels of arsenic accumulation in plants. To examine further how VPT1 may modulate arsenic contents in plants, we surveyed the expression patterns of all the PHT1 family members that play roles in As(V) uptake, and found that many of the PHT1 genes were down-regulated in the vpt1 mutant as compared with the wild type under Pi-sufficient conditions, but not when Pi levels were low in the medium. Interestingly, As(V) sensitivity assays indicated that As(V) resistance in vpt1 mutants was prominent only under Pi-sufficient but not under Pi-deficient conditions. These results suggest that under Pi-sufficient conditions, loss of VPT1 leads to elevated levels of Pi in the cytosol, which in turn suppressed the expression of PHT1-type transporters and reduced accumulation of arsenic.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Arseniatos/toxicidade , Proteínas de Transporte de Fosfato/metabolismo , Fosfatos/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Homeostase , Mutação , Proteínas de Transporte de Fosfato/genética , Plantas Geneticamente Modificadas
5.
Wei Sheng Wu Xue Bao ; 55(8): 1042-9, 2015 Aug 04.
Artigo em Chinês | MEDLINE | ID: mdl-26665602

RESUMO

OBJECTIVE: The endoglucanase from Fusarium sp. Q7-31T was isolated, purified, identified and characterized to provide data for enzyme system of Fusarium sp. . [Methods] Strain was cultured in liquid fermentation with oat straw as carbon source, the endoglucanase was purified by using Sephacry S-100 chromatography and DEAE-sepharose ion-exchange column chromatography and the enzymatic properties were studied. The protein was identified using MADIL-TOF-TOF. RESULTS: An endoglucanase was purified and named Egn20. The molecular weight was 55.37 kDa and isoelectric point (pI) was 7.44. Egn20 had optimal activity with carboxymethyl cellulose at 40 degrees C and pH 6.0, stabilized at 45 degrees C and pH 5.0 - 7.0, activated by Fe2+, inhibited by Na+, Ca2+, Mg2+, Zn2+, K+ and inactivated by Hg2+. The enzymatic properties and MADIL-TOF-TOF results suggested that Egn20 belongs to GH7 family. CONCLUSION: Our results may provide important data for the study of Fusarium sp. enzyme system.


Assuntos
Celulase/química , Celulase/isolamento & purificação , Proteínas Fúngicas/química , Proteínas Fúngicas/isolamento & purificação , Fusarium/enzimologia , Celulase/genética , Celulase/metabolismo , Estabilidade Enzimática , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fusarium/química , Fusarium/genética , Glucanos/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , Especificidade por Substrato , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA