Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Water Res ; 235: 119879, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36934541

RESUMO

Changes in spectral features and molecular weight (MW) of dissolved organic matter (DOM) along the A/A/O processes in eight full-scale wastewater treatment plants (WWTPs) were characterized using size exclusion chromatography with a diode array detector, a fluorescence detector and an organic carbon detector in tandem (SEC-DAD-FLD-OCD) as well as bulk water quality parameters. The parallel factor (PARAFAC) and the nonnegative matrix factorization (NMF) analyses have been effectively applied to the postprocessing of SEC-FLD fingerprints and SEC-OCD chromatograms, respectively. Individual SEC-FLD-PARAFAC or SEC-OCD-NMF components may span a broad range of MW, indicating that these SEC fractions within the same component were cognate and varied coherently across the dataset samples. The SEC-FLD-PARAFAC modeling and SEC-OCD-NMF analysis have clearly and concisely presented that the dramatic decreases of dissolved organic carbon, UV absorbance at 254 nm and protein-like fluorescence at Ex280/Em350 nm in the anaerobic process were primarily associated with the degradation of the large MW proteinaceous and polysaccharide-like biopolymers. It has also revealed that fluorescence of humic acid-like fractions increased significantly during the anaerobic process, but fluorescence of fulvic acid-like and humic substances' building blocks decreased slightly. Laboratory experiments further confirmed the presence of the humification process in anaerobic processes, and the formation of humic acid-like fluorophores may be associated with carbohydrate metabolism. The combination of SEC-FLD-PARAFAC and SEC-OCD-NMF helped to establish the links between changes in bulk water quality parameters and the evolution of SEC MW fractions, which provides a more in-depth insight into wastewater DOM treatability and enables the optimization of wastewater treatment processes.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Matéria Orgânica Dissolvida , Substâncias Húmicas/análise , Poluentes Químicos da Água/análise , Proteínas , Cromatografia em Gel , Espectrometria de Fluorescência/métodos , Análise Fatorial
2.
Water Res ; 232: 119702, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-36758356

RESUMO

Electrochemical oxidation (EO) is an attractive option for treatment of dissolved organic matter (DOM) in landfill leachate but concerns remain over the energy efficiency and formation of oxidation byproducts ClO3- and ClO4-. In this study, EO treatment of landfill leachates was carried out using representative active and nonactive anode materials, cell configurations and current densities. Size exclusion chromatograms coupled with 2D synchronous and asynchronous correlation analysis showed that the sensitivity of DOM fractions to EO degradation was dependent on the anode material. The nonactive boron-doped diamond (BDD) anode demonstrated the best performance for DOM oxidation. The humic acid-like fraction (HA, 2.5-20 kDa) predominated the visible absorbance of landfill leachates at λ ≥400 nm, and it generally had the highest reaction rates except the occurrence of the pH-induced denaturation and precipitation of the proteinaceous biopolymer fraction (BP, >20 kDa). During the EO treatment of landfill leachate with BDD anode, the UV absorbance spectra of landfill leachates at wavelengths <400 nm were affected by the formation of free chlorine. Instead, the decrease of Abs420 was found to be a good indicator of the shift of the oxidation from predominantly HA fraction to the proteinaceous BP fraction. The behavior of the Abs420 parameter was also indicative of the transition from the energy-efficient oxidation of DOM to the dominance of side reactions of chlorine evolution and the subsequent formation of ClO3- and ClO4-. These findings suggest that the EO treatment of landfill leachate can be optimized by adjusting the current density with feedback signals from the online monitoring of Abs420, to achieve a trade-off between degradation of DOM and control of ClO3- and ClO4-.


Assuntos
Matéria Orgânica Dissolvida , Poluentes Químicos da Água , Poluentes Químicos da Água/química , Cloro/análise , Oxirredução , Análise Espectral
3.
Sci Total Environ ; 824: 153793, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35150674

RESUMO

A better understanding of the physicochemical properties and fate of algae-derived organic matter (AOM) in water treatments significantly benefits the control of algae-derived disinfection byprodcuts and process parameter optimization. In this study, we conducted a comprehensive investigation of the release and treatability of dissolved organic matter during prechlorination and postcoagulation treatments of cyanobacteria-laden source water via size-exclusion chromatography-tandem diode array detector, fluorescence detector and organic carbon detector. The results revealed that the allochthonous humic substances could protect algal cell membrane from damage during prechlorination at a low level of chlorine dose. Due to the release and oxidation of biopterins during prechlorination of M. aeruginosa cells, the variation of the humic-like fluorescence can be used to indicate the chlorine dose for a sufficient membrane damage of algae cells. The prechlorination of M. aeruginosa cells induced minimal release of large MW biopolymer fractions but much more release of low MW fractions E1 and E2 (i.e., unknown carbonaceous substances and fluorescent nitrogenous biopterins). The physically extracted AOM contained a large proportion of biopolymers and could not well represent those released during prechlorination treatment. During coagulation, the negative effect of humic substances on the coagulant demand to achieve algae removal was more remarkable than AOM released by prechlorination. The high-MW biopolymers and humic substances can be removed over 50% by coagulation. Among the low-MW carbonaceous fractions, E1 released by prechlorination can also be effectively removed via coagulation while fractions C, D (possibly oligopeptides or secondary aromatic metabolites & low MW acids) and nitrogenous biopterins were recalcitrant to coagulation. This study highlights the differences of AOM properties between physical extraction and prechlorination and provides a basis for drinking water treatment plants to give more attention to the recalcitrant low MW fractions in coagulation when treating algae-laden source water.


Assuntos
Cianobactérias , Purificação da Água , Biopolímeros , Cloro , Substâncias Húmicas/análise , Nitrogênio/análise , Purificação da Água/métodos
4.
Chemosphere ; 258: 127393, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32947669

RESUMO

UV/chlorine and chlorination processes have drawn great interests of water treatment utilities for oxidation and disinfection purposes. This work proposed a restricted chlorine-dosing strategy for UV/chlorine and post-chlorination under different pH and UV irradiation conditions by comprehensively assessing the oxidation of natural organic matter (NOM), formation of 9 haloacetic acids (HAA9) and bromate, and alteration of toxicity. During UV/chlorine with restricted chlorine doses, the oxidation of NOM chromophores (i.e., ΔUVA254) showed an apparent dependence on cumulative exposures of free available chlorine (CTFAC); Meanwhile, HAA9 formation was determined by CTFAC values and could be linearly correlated with ΔUVA254 irrespective of pH and UV irradiation wavelength. Irradiated by 254 nm LP-Hg lamp, the faster chlorine photolysis produced relatively higher steady-state concentrations of Cl• and HO• species but resulted in lower CTFAC. Reducing CTFAC values by operation parameters (pH, UV wavelength and irradiation fluence) could mitigate HAA9 formation during UV/chlorine at a specific chlorine dose. Additionally, high bromide concentration and acidic pH promoted more bromo-HAAs formation, and the presence of NOM significantly suppressed bromate formation. Analogous to ozonation, the UV/chlorine pre-oxidation could reduce the HAA9 formation potentials during post-chlorination at mildly alkaline pH. The photobacterium bioassay further demonstrated that although the UV/chlorine treatment might have increased the acute toxicity, the post-chlorination treatment could polish the acute toxicity to the level of chlorination alone. These results suggest that with the restricted chlorine-dosing strategy, the trade-off between oxidation/disinfection efficiency and DBPs formation can be controlled by monitoring CTFAC and ΔUVA254 values during UV/chlorine treatment.


Assuntos
Purificação da Água/métodos , Bromatos , Brometos/efeitos da radiação , Cloro , Desinfecção , Halogenação , Concentração de Íons de Hidrogênio , Oxirredução , Fotólise , Raios Ultravioleta , Poluentes Químicos da Água/análise , Purificação da Água/normas
5.
Chemosphere ; 243: 125321, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31733541

RESUMO

In this study, size exclusion chromatography with an array of absorbance, fluorescence, organic nitrogen and organic carbon detectors was used for characterizing property and treatability of effluent organic matter (EfOM) from 12 wastewater treatment plants. According to their apparent molecular weight (AMW), EfOM fractions were assigned to biopolymers (>20 kDa), humic substances that comprise sub-fractions of humic-like acids (HA-I & HA-II, 2.3-7.0 kDa) and fulvic-like acids (FA, 1.5-2.3 kDa), building blocks (0.55-1.5 kDa) and low molecular weight neutral substances (<550 Da). The fractions of biopolymers and low molecular weight neutral substances didn't show humic-like fluorescence, while the fractions of HA-II, FA and building blocks usually had signatures of both humic-like and protein-like fluorescence. Humic substances generally contributed the largest proportion of dissolved organic carbon and nitrogen (DOC & DON) in effluents. Coagulation removed EfOM fractions following the order of biopolymers > HA subfraction > FA subfraction > building blocks, while little removal of protein-like fluorescence in HA-II and FA subfractions was detected. Anion exchange treatment could effectively reduce DOC and DON concentrations; the sequence of the treatment efficiency was humic substances > biopolymers > building blocks. Increasing O3 doses caused DOC and DON of EfOM to be gradually transformed from large AMW fractions into small AMW fractions, while chromophores and fluorophores in HA subfractions were relatively more refractory than those in the other fractions. Size exclusion chromatography with multiple detectors are suggested to be an informative technique for estimating treatability of EfOM by advanced wastewater treatment processes.


Assuntos
Eliminação de Resíduos Líquidos/métodos , Poluentes Químicos da Água/análise , Carbono/análise , Cromatografia em Gel , Fluorescência , Substâncias Húmicas/análise , Peso Molecular , Nitrogênio/análise , Compostos Orgânicos/química , Águas Residuárias/química
6.
Asian Pac J Trop Med ; 9(8): 777-80, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27569887

RESUMO

OBJECTIVE: To conduct the cloning identification and characterization of the sequence of human IL-17A promoter so as to analyze the regulatory mechanism of the gene expression of IL-17. METHODS: First of all, the potential promoter region of IL-17A was found by means of the bioinformatics methods. Then, it was cloned into the reporter vector with PCR technique. Finally, the activity of the test promoter was determined by dual luciferase reporter system. RESULTS: Two transcriptional start points of the upper region, 600 bp and 1000 bp, of IL-17A were obtained by PCR clone and proved to have certain activities by dual luciferase reporter system. Also, they could be activated by IL-17A activator STAT3, which could start the expression of the reported gene. CONCLUSIONS: Clone established the regulatory region of human IL-17A promoter, which provided bases to the subsequent function research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...