Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122054, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36334416

RESUMO

The issue of disinfection byproducts (DBPs) in the water has received critical attention due to the health effects on humans. In the water environment, interactions between bovine serum albumins (BSA), the most abundant water-soluble protein, and DBPs unavoidably occur. In this study, comparative binding interactions of two aromatic DBPs - 2,4,6-trichlorophenol (TCP) and 2,4,6-tribromophenol (TBP) with BSA were investigated systematically utilizing fluorescence spectrometry, UV absorption spectrometry, isothermal titration calorimetry and molecular docking approach. The fluorescence quenching results indicated that TCP/TBP could quench the endogenous fluorescence of BSA through static quenching mechanisms, and TBP showed a more substantial quenching effect. The binding constants were determined for TCP-BSA (3.638 × 105 L/mol, 303 K) and TBP-BSA (6.394 × 105 L/mol, 303 K) complexes, with TBP showing higher binding affinity than TCP. The thermodynamic study and docking analysis suggested that hydrogen bonding and van der Waals forces were the primary interaction forces. Both of TCP and TBP were located in the subdomain IIIA of BSA, and TBP could form more stable complex than TCP. The results of the present study contributed valuable information on the environmental behaviors of halophenols in water environment from perspectives of binding with BSA.


Assuntos
Soroalbumina Bovina , Água , Humanos , Soroalbumina Bovina/química , Simulação de Acoplamento Molecular , Ligação Proteica , Sítios de Ligação , Calorimetria , Espectrometria de Fluorescência , Termodinâmica , Dicroísmo Circular , Espectrofotometria Ultravioleta
2.
Food Chem ; 382: 132349, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35158266

RESUMO

The health effects of disinfection byproducts (DBPs) in drinking water drew great attention recently. Herein, by using in vitro (fluorescence quenching, UV absorbance, circular dichroism) and in silico (molecular docking) method, binding interactions of two halophenolic DBPs (2,4,6-trichlorophenol [TCP] and 2,4,6-tribromophenol [TBP]) with human serum albumin (HSA) and the influence of hydroxypropyl-beta-cyclodextrin (HPCD) on the interactions were investigated. TCP/TBP could form complexes with HSA mainly by hydrogen bonding, while changing its secondary structure, among which TBP showed more influential effect. Interestingly, the binding constants for halophenol-HSA complexes decreased obviously with the involvement of HPCD. Molecular docking results revealed that HPCD could include TCP/TBP into its cavity and change their original binding sites from subdomain IB to IIA, resulting in a more stable binding system. These findings are beneficial for understanding the toxicity of halophenols inside the human body and indicated that HPCD could be a promising detoxication agent for DBPs.


Assuntos
Desinfecção , Albumina Sérica Humana , 2-Hidroxipropil-beta-Ciclodextrina , Sítios de Ligação , Clorofenóis , Dicroísmo Circular , Humanos , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Fenóis , Ligação Proteica , Espectrometria de Fluorescência , Termodinâmica
3.
Front Aging Neurosci ; 14: 1033128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620773

RESUMO

Background: Diabetes cognitive impairment (DCI) is a common diabetic central nervous system disorder that severely affects the quality of life of patients. Qishiwei Zhenzhu Pills (Ranasampel) is a valuable Tibetan medicine formula with the ability to improve cerebral blood vessels, protect nerves and improve learning and memory, which has also been widely verified in clinical and basic research. Currently, the prevention and treatment of DCI are still in the exploratory research stage, and the use of Ranasampel will provide new ideas and insights for its treatment. Objective: This study is to explore the absorbed components in serum derived from Ranasampel using serum pharmacochemistry, then identify the potential mechanism of Ranasampel for the treatment of DCI through bioinformatics and microarray data validation. Methods: The UPLC-Q-Exactive MS/MS-based serum pharmacochemistry method was conducted to identify the main active components in serum containing Ranasampel. Then, these components were used to predict the possible biological targets of Ranasampel and explore the potential targets in treating DCI by overlapping with differentially expressed genes (DEGs) screened from Gene Expression Omnibus datasets. Afterward, the protein-protein interaction network, enrichment analyses, hub gene identification, and co-expression analysis were used to study the potential mechanism of Ranasampel. Particularly, the hub genes and co-expression transcription factors were further validated using hippocampal expression profiles of db/db mice treated with Ranasampel, while the Morris water-maze test and H&E staining were used to assess the spatial learning and memory behaviors and histopathological changes. Results: Totally, 40 compounds derived from Ranasampel had been identified by serum sample analysis, and 477 genes related to these identified compounds in Ranasampel, 110 overlapping genes were collected by the intersection of Ranasampel target genes and DEGs. Further comprehensive analysis and verification emphasized that the mechanism of Ranasampel treatment of DCI may be related to the improvement of learning and memory function as well as insulin resistance, hyperglycemia-induced neuronal damage, and neuroinflammation. Conclusion: This study provided useful strategies to explore the potential material basis for compound prescriptions such as Ranasampel. These hub genes and common pathways also provided new ideas for further study of therapeutic targets of DCI and the pharmacological mechanism of Ranasampel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...