Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Viruses ; 14(6)2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35746667

RESUMO

Porcine epidemic diarrhea virus (PEDV) is the etiological agent of porcine epidemic diarrhea (PED) characterized by vomit, watery diarrhea, dehydration and high mortality. Outbreaks of highly pathogenic variant strains of PEDV have resulted in extreme economic losses to the swine industry all over the world. The study of host-virus interaction can help to better understand the viral pathogenicity. Many studies have shown that poly(A)-binding proteins are involved in the replication process of various viruses. Here, we found that the infection of PEDV downregulated the expression of poly(A)-binding protein cytoplasmic 1 (PABPC1) at the later infection stage in Vero cells. The overexpression of PABPC1 inhibited the proliferation of PEDV at transcription and translation level, and siRNA-mediated depletion of PABPC1 promoted the replication of PEDV. Furthermore, mass spectrometry analysis and immunoprecipitation assay confirmed that PABPC1 interacted with the nucleocapsid (N) protein of PEDV. Confocal microscopy revealed the co-localizations of PABPC1 with N protein in the cytoplasm. Taken together, these results demonstrate the antiviral effect of PABPC1 against PEDV replication by interacting with N protein, which increases understanding of the interaction between PEDV and host.


Assuntos
Infecções por Coronavirus , Vírus da Diarreia Epidêmica Suína , Doenças dos Suínos , Animais , Chlorocebus aethiops , Diarreia , Proteínas do Nucleocapsídeo/genética , Proteínas do Nucleocapsídeo/metabolismo , Suínos , Células Vero , Replicação Viral
2.
Virus Res ; 292: 198229, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33207263

RESUMO

Infectious bronchitis virus (IBV) of GI-19 (QX), GI-7 (TW), GI-13 (4/91) and GI-1 (Mass) lineages have been frequently detected in China in recent years. Here, An IBV strain, referred as GD17/04, was isolated from the dead yellow feather chicken vaccinated with H52 and 4/91 vaccines, whose genome sequence was obtained through high-throughput sequencing. Then it has been confirmed by the RDP and SimPlot analysis that GD17/04 is a recombinant strain deriving from YX10, 4/91, TW 2575/98 and H52 strains. Therein S1 gene of GD17/04 consists of sequences of TW2575/98 and 4/91, the former for the region of 20,371 to 21,072 nt and 21,847 to 21,975 nt, the latter for the sandwiched region of 21,073 to 21,846 nt. Moreover, as a nephropathogenic variant which caused high morbidity of 100 % and mortality of 60 %, unlike most other IBV strains, GD17/04 can cause obvious cell lesion in primary CEK cell, and even in DF-1 cells, without the process of continuous passage. As the few IBV strain can infect avian passage cell line, GD17/04 provides a material basis for further study of the interaction mechanism between IBV and avian host. Collectively, the findings highlight the significance that biological characteristics of novel strain should be studied, in addition to constant epidemiologic and molecular surveillance for IBV.


Assuntos
Infecções por Coronavirus/veterinária , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Doenças das Aves Domésticas/virologia , Animais , Linhagem Celular , Galinhas , China , Infecções por Coronavirus/mortalidade , Infecções por Coronavirus/virologia , Genoma Viral , Vírus da Bronquite Infecciosa/classificação , Vírus da Bronquite Infecciosa/fisiologia , Filogenia , Doenças das Aves Domésticas/mortalidade , Recombinação Genética , Virulência
3.
Vet Microbiol ; 242: 108579, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32122588

RESUMO

In China, variants of infectious bronchitis virus (IBV) evolve continually and diverse recombinant strains have been reported. Here, an IBV strain, designated as ck/CH/LJX/2017/07 (referred as JX17) was isolated from chicken vaccinated with H120 and 4/91 in Jiangxi, China, in 2017. Sequence analysis reveals of the S1 gene of JX17 the highest nucleotide identity of 98.15% with that of GI-7 genotype TW2575/98 strain. Furthermore, whole genome analysis among JX17 and other 18 IBV strains demonstrates that JX17 has the highest nucleotide identity of 95.94% with GI-19 genotype YX10 strain. Among all genes of JX17 except the S1 gene, the N gene and 3' UTR have the highest identity to GI-13 genotype 4/91 strain and the rest genes are the most identical to GI-19 genotype YX10 strain. Analyzed by the RDP and SimPlot, the recombination of JX17 strain was shown to occur in regions which include 5'-terminal S1 gene (20,344 to 22,447 nt), most N gene and 3' UTR (26,163 to 27,648 nt). The pathogenicity study shows that JX17 is a natural low virulent IBV variant which caused respiratory symptoms but no death. Taken together, these results indicate that IBV strains continue to evolve through genetic recombination and three prevalent genotypes in China including QX, TW and 4/91 have started to recombine.


Assuntos
Infecções por Coronavirus/veterinária , Genoma Viral , Vírus da Bronquite Infecciosa/genética , Vírus da Bronquite Infecciosa/patogenicidade , Vírus Reordenados/genética , Recombinação Genética , Animais , Galinhas/virologia , China , Infecções por Coronavirus/virologia , Evolução Molecular , Genótipo , Sequenciamento de Nucleotídeos em Larga Escala , Vírus da Bronquite Infecciosa/classificação , Filogenia , Doenças das Aves Domésticas/virologia , RNA Viral/genética , Vírus Reordenados/patogenicidade , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...