Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(25): 37125-37135, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38760608

RESUMO

Rare earth elements (REE) are essential components of many electronic devices that could end-up in solid waste disposal sites and inadvertently released in the environment. The purpose of this study was to examine the toxicity of two heavy REEs, erbium (Er) and lutetium (Lu), in freshwater mussels Dreissena polymorpha. Mussels were exposed to 14 days to increasing concentration (10, 50, 250, and 1250 µg/L) of either Er and Lu at 15 °C and analyzed for gene expression in catalase (CAT), superoxide dismutase (SOD), metallothionein (MT), cytochrome c oxidase (CO1), and cyclin D for cell cycle. In addition, lipid peroxidation (LPO), DNA damage (DNAd), and arachidonate cyclooxygenase were also determined. The data revealed that mussels accumulated Er and Lu similarly and both REEs induced changes in mitochondrial COI activity. Er increased cell division, MT, and LPO, while Lu increased DNAd and decreased cell division. Tissue levels of Er were related to changes in MT (r = 0.7), LPO (r = 0.42), CO1 (r = 0.69), and CycD (r = 0.31). Lu tissue levels were related to changes in CO1 (r = 0.73), CycD (r = - 0.61), CAT (r = 0.31), DNAd (r = 0.43), and SOD (r = 0.34). Although the lethal threshold was similar between Er and Lu, the threshold response for LPO revealed that Er produced toxicity at concentrations 25 times lower than Lu suggesting that Er was more harmful than Lu in mussels. In conclusions, the data supports that the toxicity pattern differed between Er and Lu although they are accumulated in the same fashion.


Assuntos
Dreissena , Metais Terras Raras , Poluentes Químicos da Água , Animais , Dreissena/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Metais Terras Raras/toxicidade , Água Doce , Metalotioneína/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos
2.
Ecotoxicol Environ Saf ; 241: 113793, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35759983

RESUMO

Rare earth elements (REEs) are considered critical elements for technology and their extraction through mining activities is expected to increase in the future. Due to their chemical similarities, they often co-occur in minerals and thus their ecotoxicity should be assessed as a group/family. However, the available ecotoxicological studies focused mainly on the evaluation of the potential toxicological impacts of individual REEs rather than their mixtures. The aim of this study was therefore to evaluate the toxicity of a representative mixture of five REEs (La, Ce, Pr, Nd and Sm) spanning environmentally relevant concentrations ranging from 0.05X (29 µg REEs L-1) to 5X (2926 µg REEs L-1) to the test organism, Hydra vulgaris, at the morphological, reproductive and regenerative levels. The data showed that lethality occurred at concentrations near (2.5 fold) to those inducing sublethal effects after chronic exposure of 7 days. The mixture affected reproduction and head regeneration and even lethality at concentrations even below those reported at environmental concentration (0.5X = 293 µg REEs L-1) in lakes. This suggests that REEs concentrations found in lakes near mining activities could disrupt regeneration and impair embryonic development. Our data also revealed that combining the 5 REEs results in an antagonistic effect, suggesting that those elements share the same receptor and that low molecular weight and high radius elements (approaching iron) were less toxic. Taken together, hydra could be used as a sensitive model organism for the assessment of aquatic ecotoxicological risks of REE mixtures but further analyses of biochemical and gene expressions should improve our understanding of the long-term effects of REEs mixtures.


Assuntos
Hydra , Metais Terras Raras , Animais , Ecossistema , Ecotoxicologia , Metais Terras Raras/análise , Mineração
3.
Environ Sci Pollut Res Int ; 28(22): 28263-28274, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33534100

RESUMO

Rare earth elements (REEs) are contaminants of increasing interest due to intense mining activities for commercial purposes and ultimately released in the environment. We exposed juvenile rainbow trout (Oncorhynchus mykiss) to a representative mixture of the five most abundant REEs for 96 h at concentrations similar found in lakes contaminated by mining activities at 0.1, 1, 10, and 100X whereas the 1x mixture contained cerium (Ce, 280 µg/L), lanthanum (La, 140 µg/L), neodymium (Nd, 120 µg/L), praseodymium (Pr, 28 µg/L), and samarium (Sm, 23 µg/L). We investigated the expression of 14 genes involved in oxidative stress, DNA repair, tissue growth/proliferation, protein chaperoning, xenobiotic biotransformation, and ammonia metabolism in the liver. In addition, DNA damage, oxidative stress (lipid peroxidation or LPO), inflammation (cyclooxygenase or COX activity), detoxification mechanisms (glutathione-S-transferase activity or GST), and labile zinc were determined in gills. The data revealed that genes involved in oxidative stress-catalase (cat), heat shock proteins 70 (hsp70), and glutamate dehydrogenase (glud) were upregulated while glutathione S-transferase (gst) and metallothionein (mt) gene expressions were downregulated. The mixture was genotoxic and increased labile Zn in gills of exposed trout. These changes occurred at concentrations 600 times lower than the LC50 for this mixture indicating effects below the 1X concentration. Based on principal component analysis and concentration-dependent reponses, the following sublethal effects were considered the most important/significant: DNA strand breaks (genotoxicity), labile Zn, cat, gst, hsp70, sparc, mt, and glud. These effects of fish juveniles are likely to occur in environments under the influence of mining activities.


Assuntos
Metais Terras Raras , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Catalase/metabolismo , Brânquias/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Metais Terras Raras/metabolismo , Metais Terras Raras/toxicidade , Oncorhynchus mykiss/metabolismo , Estresse Oxidativo , Poluentes Químicos da Água/análise
4.
Ecotoxicol Environ Saf ; 208: 111588, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396111

RESUMO

Rare earth elements (REEs) have been recently identified as emergent contaminants because of their numerous and increasing applications in technology. The impact of REEs on downstream ecosystems, notably aquatic organisms, is of particular concern, but has to date been largely overlooked. The purpose of this study was thus to evaluate the toxicity of lanthanide metals, lutetium (Lu) and dysprosium (Dy) in rainbow trout after 96 h of exposure. The lethal concentration (LC50) was determined and the expression of 14 genes involved in different pathways such as oxidative stress, xenobiotic detoxification, mitochondrial respiration, DNA repair, protein folding and turnover, inflammation, calcium binding and ammonia metabolism were quantified in surviving fish. In parallel, lipid peroxidation (LPO), DNA damage (DSB), metallothionein level (MT) and cyclooxygenase activity (COX) were examined. The acute 96 h-LC50 data revealed that Lu was more toxic than Dy (1.9 and 11.0 mg/L, respectively) and was able to affect all investigated pathways by changing the expression of the studied genes, to the exception of superoxide dismutase (SOD), catalase (CAT) and glutathione-S-transferase (GST). It also induced a decrease in DNA repair at concentrations 29 times below the LC50. This suggests that Lu could trigger a general stress to disrupt the cell homeostasis leading to genotoxicity without promoting oxidative stress. However, Dy induced modulation in the expression of genes involved in the protection against oxidative stress, detoxification, mitochondrial respiration, immunomodulation, protein turnover and an increase in the DNA strand breaks at concentrations 170 times lower than LC50. Changes in mRNA level transcripts could represent an early signal to prevent against toxicity of Dy, which exhibited inflammatory and genotoxic effects. This study thus provides useful knowledge enhancing our understanding of survival strategies developed by rainbow trout to cope with the presence of lanthanides in the environment.


Assuntos
Disprósio/toxicidade , Lutécio/toxicidade , Oncorhynchus mykiss/fisiologia , Poluentes Químicos da Água/toxicidade , Animais , Catalase/metabolismo , Dano ao DNA , Reparo do DNA , Disprósio/metabolismo , Ecossistema , Glutationa Transferase/metabolismo , Dose Letal Mediana , Peroxidação de Lipídeos/efeitos dos fármacos , Lutécio/metabolismo , Metalotioneína/metabolismo , Metais Terras Raras , Oncorhynchus mykiss/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Superóxido Dismutase/metabolismo
5.
Ecotoxicol Environ Saf ; 165: 662-670, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30245300

RESUMO

Samarium (Sm) and yttrium (Y) are commonly used rare earth elements (REEs) but there is a scarcity of information concerning their biological effects in non-target aquatic organisms. The purpose of this study was to determine the bioavailability of those REEs and their toxicity on Dreissena polymorpha after exposure to increasing concentration of Sm and Y for 28 days at 15 °C. At the end of the exposure period, the gene expression of superoxide dismutase (SOD), catalase (CAT), metallothionein (MT), glutathione-S-transferase (GST), cytochrome c oxidase 1 (CO1) and cyclin D (Cyc D) were analysed. In addition, we examined lipid peroxidation (LPO), DNA strand breaks (DSB), GST and prostaglandin cyclooxygenase (COX) activities. Results showed a concentration dependent increase in the level of the REEs accumulated in the soft tissue of mussels. Both REEs decreased CAT but did not significantly modulated SOD and MT expressions. Furthermore, Sm3+ up-regulated GST, CO1 and Cyc D, while Y3+ increased and decreased GST and CO1 transcripts levels, respectively. Biomarker activities showed no oxidative damage as evidenced by LPO, while COX activity was decreased and DNA strand breaks levels were changed suggesting that Sm and Y exhibit anti-inflammatory and genotoxic effects. Factorial analysis revealed that the major impacted biomarkers by Sm were LPO, CAT, CO1 and COX, while GST gene expression, COX, Cyc D and CAT as the major biomarkers affected by Y. We conclude that these REEs display different mode of action but further investigations are required in order to define the exact mechanism involved in their toxicity.


Assuntos
Dreissena/efeitos dos fármacos , Samário/toxicidade , Poluentes Químicos da Água/toxicidade , Ítrio/toxicidade , Animais , Biomarcadores/metabolismo , Catalase/metabolismo , Dano ao DNA , Dreissena/metabolismo , Água Doce/química , Glutationa Transferase/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Metalotioneína/metabolismo , Samário/metabolismo , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/metabolismo , Ítrio/metabolismo
6.
Sci Total Environ ; 631-632: 778-788, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29544181

RESUMO

Microplastics (MPs), plastic debris smaller than 5mm, are widely found in both marine and freshwater ecosystems. However, few studies regarding their hazardous effects on inland water organisms, have been conducted. For this reason, the aim of our research was the evaluation of uptake and chronic toxicity of two mixtures (MIXs) of virgin polystyrene microbeads (PMs) of 10µm and 1µm in size (MIX 1, with 5×105 of 1µmsizePMs/L and 5×105 of 10µmsizePMs/L, and MIX 2 with 2×106 of 1µmsizePMs/L and 2×106 of 10µmsizePMs/L) on freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia) during 6 exposure days. The PM uptake in the mussel body and hemolymph was assessed using confocal microscopy, while the chronic toxicity of PMs was evaluated on exposed mussels using a comprehensive battery of biomarkers of cellular stress, oxidative damage and neuro- genotoxicity. Confocal microscopy analyses showed that MPs concentrated in the gut lumen of exposed mussels, absorbed and transferred firstly in the tissues and then in the hemolymph. The results revealed that PMs do not produce oxidative stress and genetic damage, with the exception of a significant modulation of catalase and glutathione peroxidase activities in mussels exposed to MIX 1. Regarding neurotoxicity, we observed only a significant increase of dopamine concentration in mussels exposed to both MIXs, suggesting a possible implication of this neurotransmitter in an elimination process of accumulated PMs. This research represents a first study about the evaluation of virgin MP toxicity in zebra mussel and more research is warranted concerning the long term neurological effects of virgin MPs.


Assuntos
Dreissena/fisiologia , Monitoramento Ambiental , Poliestirenos/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Biomarcadores , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade
7.
Chemosphere ; 181: 197-207, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28437745

RESUMO

Gadolinium (Gd), a metal of the lanthanide series used in various industrial and medical purposes is released into the aquatic environment. However, there are few aquatic toxicological studies addressing environmental effects of Gd which remains unknown in aquatic animals. Therefore, this study aimed to compare the effects of GdCl3 and a gadolinium-based MRI contrast agent (Omniscan), in zebra mussels after 28 days through a multibiomarker approach. Data revealed that after GdCl3 exposure, the mRNA level of metallothionein (MT) was modulated, those of cytochrome c oxidase (CO1) and superoxide dismutase (SOD) were increased, while gene expressions of catalase (CAT) and glutathione-S-transferase (GST) were downregulated. Furthermore, neither lipoperoxidation (LPO) nor genotoxicity were detected but only a decrease in the cyclooxygenase (COX) activity was observed. In addition, a significant correlation was found between biomarkers and bioaccumulated Gd, suggesting that mitochondrial and anti-inflammatory pathways were triggered with GdCl3. By opposition, the contrasting agent formulation induced downregulation of SOD, CAT, GST and CO1, a decrease in the level of LPO and an increase in the GST and COX activities. This suggests that the chelated form of Gd did not promote reactive oxygen species (ROS) production and exhibits antioxidant and proinflammatory effects in mussels. Therefore, this study revealed that ionic and the chelated form of Gd influence different cellular pathways to initiate cellular changes.


Assuntos
Dreissena/efeitos dos fármacos , Gadolínio/toxicidade , Animais , Antioxidantes/metabolismo , Bivalves/metabolismo , Meios de Contraste/toxicidade , Água Doce , Inflamação/induzido quimicamente , Imageamento por Ressonância Magnética , Oxirredutases/metabolismo , Poluentes Químicos da Água/análise
8.
Biol Open ; 1(12): 1192-9, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-23259053

RESUMO

Okadaic acid (OA) is one of the main diarrhetic shellfish poisoning toxins and a potent inhibitor of protein phosphatases 1 and 2A. The downstream signal transduction pathways following the protein phosphatase inhibition are still unknown and the results of most of the previous studies are often conflicting. The aim of the present study was to evaluate the effects of OA on heart clam cells and to analyse its possible mechanisms of action by investigating the signal transduction pathways involved in OA cytotoxicity. We showed that OA at 1 µM after 24 h of treatment induces disorganization of the actin cytoskeleton, rounding and detachment of fibroblastic cells. Moreover, treatment of heart cells revealed a sequential activation of MAPK proteins depending on the OA concentration. We suggest that the duration of p38 and JNK activation is a critical factor in determining cell apoptosis in clam cardiomyocytes. In the opposite, ERK activation could be involved in cell survival. The cell death induced by OA is a MAPK modulated pathway, mediated by caspase 3-dependent mechanism. OA was found to induce no significant effect on spontaneous beating rate or inward L-type calcium current in clam cardiomyocytes, suggesting that PP1 was not inhibited even by the highest dose of OA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA