Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38866482

RESUMO

SLURP1 and SLURP2 are both small secreted members of the Ly6/u-PAR family of proteins and are highly expressed in keratinocytes. Loss of function mutations in SLURP1 lead to a rare autosomal recessive Palmoplantar Keratoderma (PPK), Mal de Meleda (MdM), which is characterized by diffuse, yellowish palmoplantar hyperkeratosis. Some individuals with MdM experience pain in conjunction with the hyperkeratosis that has been attributed to fissures or microbial superinfection within the affected skin. By comparison, other hereditary PPKs such as Pachyonychia congenita (PC) and Olmsted syndrome (OS) show prevalent pain in PPK lesions. Two mouse models of MdM, Slurp1 knockout and Slurp2X knockout, exhibit robust PPK in all four paws. However, whether the sensory experience of these animals including augmented pain sensitivity remains unexplored. In this study, we demonstrate that both models exhibit hypersensitivity to mechanical and thermal stimuli as well as spontaneous pain behaviors in males and females. Anatomical analysis revealed increased paw pad skin epidermal innervation and substantial alterations in palmoplantar skin immune composition in Slurp2X knockout mice. Primary sensory neurons innervating hind paw glabrous skin from Slurp2X knockout mice exhibit increased incidence of spontaneous activity and mechanical hypersensitivity both in vitro and in vivo. Thus, Slurp knockout mice exhibit polymodal PPK-associated pain that is associated with both immune alterations and neuronal hyperexcitability, and might therefore be useful for the identification of therapeutic targets to treat PPK-associated pain.Significance Statement Palmoplantar keratodermas (PPKs) are rare human skin disorders associated with thickening of the skin on the palms and soles. Pain is a common feature of some PPKs, yet the causes of PPK-associated pain are not understood. Here we show that two mouse models of one PPK, SLURP1 knockout mice and SLURP2 knockout mice, exhibit enhanced pain sensitivity and increased activity of pain-associated sensory neurons. These mouse lines will therefore be of value in defining causes of pain in PPKs and possibly developing improved therapies for that pain.

2.
Addict Biol ; 27(1): e13067, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075665

RESUMO

Despite strong preclinical evidence for the ability of corticotropin releasing factor 1 (CRF1) antagonists to regulate alcohol consumption, clinical trials have not yet demonstrated therapeutic effects of these compounds in alcohol use disorder (AUD) patients. Several confounding factors may limit the translation of preclinical CRF1 research to patients, including reliance on experimenter-administered alcohol instead of voluntary consumption, a preponderance of evidence collected in male subjects only and an inability to assess the effects of alcohol on specific brain circuits. A population of particular interest is the CRF1-containing neurons of the central amygdala (CeA). CRF1 CeA neurons are sensitive to ethanol, but the effects of alcohol drinking on CRF signalling within this population are unknown. In the present study, we assessed the effects of voluntary alcohol drinking on inhibitory control of CRF1+ CeA neurons from male and female CRF1:GFP mice using ex vivo electrophysiology and determined the contributions of CRF1 signalling to inhibitory control and voluntary alcohol drinking. Chronic alcohol drinking produced neuroadaptations in CRF1+ neurons that increased the sensitivity of GABAA receptor-mediated sIPSCs to the acute effects of alcohol, CRF and the CRF1 antagonist R121919, but these adaptations were more pronounced in male versus female mice. The CRF1 antagonist CP-154,526 reduced voluntary alcohol drinking in both sexes and abolished sex differences in alcohol drinking. The lack of alcohol-induced adaptation in the female CRF1 system may be related to the elevated alcohol intake exhibited by female mice and could contribute to the ineffectiveness of CRF1 antagonists in female AUD patients.


Assuntos
Consumo de Bebidas Alcoólicas/metabolismo , Núcleo Central da Amígdala/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Animais , Hormônio Liberador da Corticotropina/metabolismo , Etanol/farmacologia , Feminino , Masculino , Camundongos , Pirimidinas , Pirróis , Receptores de GABA-A , Caracteres Sexuais , Transmissão Sináptica/efeitos dos fármacos , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...