Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 22061, 2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36543817

RESUMO

Due to its proximity to room temperature and demonstrated high degree of temperature tunability, FeRh's metamagnetic ordering transition is attractive for novel high-performance computing devices seeking to use magnetism as the state variable. We demonstrate electrical control of the antiferromagnetic-to-ferromagnetic transition via Joule heating in FeRh wires. The magnetic transition of FeRh is accompanied by a change in resistivity, which can be probed electrically and allows for integration into switching devices. Finite element simulations based on abrupt state transition within each domain result in a globally smooth transition that agrees with the experimental findings and provides insight into the thermodynamics involved. We measure a 150 K decrease in transition temperature with currents up to 60 mA, limited only by the dimensions of the device. The sizeable shift in transition temperature scales with current density and wire length, suggesting the absolute resistance and heat dissipation of the substrate are also important. The FeRh phase change is evaluated by pulsed I-V using a variety of bias conditions. We demonstrate high speed (~ ns) memristor-like behavior and report device performance parameters such as switching speed and power consumption that compare favorably with state-of-the-art phase change memristive technologies.

2.
ACS Nano ; 16(6): 9498-9509, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-36350197

RESUMO

With countless modern technologies utilizing wireless communication, materials that can selectively allow transmission of visible light and prevent transmission of low frequency GHz electromagnetic interference (EMI) are needed. Recently, 2D materials such as graphene, transition metal dichalcogenides, and MXenes have shown promise for such applications. Despite the rapid advances, little progress has been made in identifying 2D monolayers with intrinsically higher visible transmittance (Tvis) and shielding effectiveness (SE). With endless variations in structure and composition, the 2D materials space is too large for systematic experimental investigation. To tackle this challenge, we perform a high-throughput computational screening. Using an atomistic first-principles method, we simultaneously calculate Tvis and SE of 7000 2D monolayer materials. We identify 26 monolayer materials with excellent properties of >98% Tvis and >5 dB SE (∼70% EMI attenuation). The top candidate, an AgSe2 monolayer with predicted 98.53% Tvis and 12.53 dB SE (∼94% EMI attenuation), is a significant improvement over the state-of-the-art, graphene, with 96.7% Tvis and 3.04 dB SE (∼40% EMI attenuation). Additionally, we gain physical insights into the transparent EMI shielding performance of 2D monolayers and their electronic structure, elucidating the role of surface terminations and nearly free electron states.

3.
ACS Nano ; 16(11): 19346-19353, 2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36260344

RESUMO

While heterostructures are ubiquitous tools enabling new physics and device functionalities, the palette of available materials has never been richer. Combinations of two emerging material classes, two-dimensional materials and topological materials, are particularly promising because of the wide range of possible permutations that are easily accessible. Individually, both graphene and Pb1-xSnxTe (PST) are widely investigated for spintronic applications because graphene's high carrier mobility and PST's topologically protected surface states are attractive platforms for spin transport. Here, we combine monolayer graphene with PST and demonstrate a hybrid system with properties enhanced relative to the constituent parts. Using magnetotransport measurements, we find carrier mobilities up to 20 000 cm2/(V s) and a magnetoresistance approaching 100%, greater than either material prior to stacking. We also establish that there are two distinct transport channels and determine a lower bound on the spin relaxation time of 4.5 ps. The results can be explained using the polar catastrophe model, whereby a high mobility interface state results from a reconfiguration of charge due to a polar/nonpolar interface interaction. Our results suggest that proximity induced interface states with hybrid properties can be added to the still growing list of behaviors in these materials.

4.
ACS Nano ; 15(3): 5459-5466, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33705102

RESUMO

As the need for ever greater transistor density increases, the commensurate decrease in device size approaches the atomic limit, leading to increased energy loss and leakage currents, reducing energy efficiencies. Alternative state variables, such as electronic spin rather than electronic charge, have the potential to enable more energy-efficient and higher performance devices. These spintronic devices require materials capable of efficiently harnessing the electron spin. Here we show robust spin transport in Cd3As2 films up to room temperature. We demonstrate a nonlocal spin valve switch from this material, as well as inverse spin Hall effect measurements yielding spin Hall angles as high as θSH = 1.5 and spin diffusion lengths of 10-40 µm. Long spin-coherence lengths with efficient charge-to-spin conversion rates and coherent spin transport up to room temperature, as we show here in Cd3As2, are enabling steps toward realizing actual spintronic devices.

5.
ACS Appl Mater Interfaces ; 12(8): 9580-9588, 2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-31999089

RESUMO

We report the synthesis of high-quality single monolayer MoS2 samples using a novel technique that utilizes direct liquid injection (DLI) for the delivery of precursors. The DLI system vaporizes a liquid consisting of a selected precursor dissolved in a solvent into small, micron-sized droplets in an expansion chamber maintained at a selected temperature and pressure, before delivery to the deposition chamber. We demonstrate the synthesis of monolayer MoS2 on SiO2/Si substrates using the DLI technique with film quality superior to exfoliated samples or those grown by traditional tube furnace chemical vapor deposition (CVD) methods. Photoluminescence measurements of DLI monolayers exhibit consistently brighter emission, narrower line width, and higher emission energy than their exfoliated and CVD counterparts. Conductive atomic force microscopy identifies a defect density of 8.3 × 1011/cm2 in DLI MoS2, lower than the measured density in CVD material and nearly an order of magnitude improvement over the exfoliated MoS2 investigated under the same conditions. The DLI method is directly applicable to many other van der Waals materials, which require the use of challenging low vapor pressure precursors, to the growth of alloys, and sequential growths of dissimilar materials leading to van der Waals heterostructures.

6.
ACS Nano ; 14(1): 708-714, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31891477

RESUMO

We report continuous-wave second harmonic and sum frequency generation from two-dimensional transition metal dichalcogenide monolayers and their heterostructures with pump irradiances several orders of magnitude lower than those of conventional pulsed experiments. The high nonlinear efficiency originates from above-gap excitons in the band nesting regions, as revealed by wavelength-dependent second order optical susceptibilities quantified in four common monolayer transition metal dichalcogenides. Using sum frequency excitation spectroscopy and imaging, we identify and distinguish one- and two-photon resonances in both monolayers and heterobilayers. Data for heterostructures reveal responses from constituent layers accompanied by nonlinear signal correlated with interlayer transitions. We demonstrate spatial mapping of heterogeneous interlayer coupling by sum frequency and second harmonic confocal microscopy on heterobilayer MoSe2/WSe2.

7.
Nat Commun ; 10(1): 5539, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804477

RESUMO

Breaking the valley degeneracy in monolayer transition metal dichalcogenides through the valley-selective optical Stark effect (OSE) can be exploited for classical and quantum valleytronic operations such as coherent manipulation of valley superposition states. The strong light-matter interactions responsible for the OSE have historically been described by a two-level dressed-atom model, which assumes noninteracting particles. Here we experimentally show that this model, which works well in semiconductors far from resonance, does not apply for excitation near the exciton resonance in monolayer WS2. Instead, we show that an excitonic model of the OSE, which includes many-body Coulomb interactions, is required. We confirm the prediction from this theory that many-body effects between virtual excitons produce a dominant blue-shift for photoexcitation detuned from resonance by less than the exciton binding energy. As such, we suggest that our findings are general to low-dimensional semiconductors that support bound excitons and other many-body Coulomb interactions.

8.
ACS Appl Mater Interfaces ; 11(17): 16147-16155, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30973218

RESUMO

Monolayers of transition-metal dichalcogenides (TMDs) are promising components for flexible optoelectronic devices because of their direct band gap and atomically thin nature. The photoluminescence (PL) from these materials is often strongly suppressed by nonradiative recombination mediated by midgap defect states. Here, we demonstrate up to a 200-fold increase in PL intensity from monolayer MoS2 synthesized by chemical vapor deposition (CVD) by controlled exposure to laser light in the ambient. This spatially resolved passivation treatment is stable in air and vacuum. Regions unexposed to laser light remain dark in fluorescence despite continuous impingement of ambient gas molecules. A wavelength-dependent study confirms that PL brightening is concomitant with exciton generation in the MoS2; laser light below the optical band gap fails to produce any enhancement in the PL. We highlight the photosensitive nature of the process by successfully brightening with a low-power broadband white light source. We decouple changes in absorption from defect passivation by examining the degree of circularly polarized PL. This measurement, which is independent of exciton generation, confirms that laser brightening reduces the rate of nonradiative recombination in the MoS2. A series of gas exposure studies demonstrate a clear correlation between PL brightening and the presence of water. We propose that H2O molecules passivate sulfur vacancies in the CVD-grown MoS2 but require photogenerated excitons to overcome a large adsorption barrier. This work represents an important step in understanding the passivation of CVD-synthesized TMDs and demonstrates the interplay between adsorption and exciton generation.

9.
ACS Nano ; 12(5): 4719-4726, 2018 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-29727170

RESUMO

An emerging class of semiconductor heterostructures involves stacking discrete monolayers such as transition metal dichalcogenides (TMDs) to form van der Waals heterostructures. In these structures, it is possible to create interlayer excitons (ILEs), spatially indirect, bound electron-hole pairs with the electron in one TMD layer and the hole in an adjacent layer. We are able to clearly resolve two distinct emission peaks separated by 24 meV from an ILE in a MoSe2/WSe2 heterostructure fabricated using state-of-the-art preparation techniques. These peaks have nearly equal intensity, indicating they are of common character, and have opposite circular polarizations when excited with circularly polarized light. Ab initio calculations successfully account for these observations: they show that both emission features originate from excitonic transitions that are indirect in momentum space and are split by spin-orbit coupling. Also, the electron is strongly hybridized between both the MoSe2 and WSe2 layers, with significant weight in both layers, contrary to the commonly assumed model. Thus, the transitions are not purely interlayer in character. This work represents a significant advance in our understanding of the static and dynamic properties of TMD heterostructures.

10.
ACS Appl Mater Interfaces ; 10(12): 10379-10387, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29510025

RESUMO

Two-dimensional (2D) materials exhibit many exciting phenomena that make them promising as materials for future electronic, optoelectronic, and mechanical devices. Because of their atomic thinness, interfaces play a dominant role in determining material behavior. In order to observe and exploit the unique properties of these materials, it is therefore vital to obtain clean and repeatable interfaces. However, the conventional mechanical stacking of atomically thin layers typically leads to trapped contaminants and spatially inhomogeneous interfaces, which obscure the true intrinsic behavior. This work presents a simple and generic approach to create clean 2D material interfaces in mechanically stacked structures. The operating principle is to use an AFM tip to controllably squeeze contaminants out from between 2D layers and their substrates, similar to a "squeegee". This approach leads to drastically improved homogeneity and consistency of 2D material interfaces, as demonstrated by AFM topography and significant reduction of photoluminescence line widths. Also, this approach enables emission from interlayer excitons, demonstrating that the technique enhances interlayer coupling in van der Waals heterostructures. The technique enables repeatable observation of intrinsic 2D material properties, which is crucial for the continued development of these promising materials.

11.
ACS Nano ; 11(12): 12601-12608, 2017 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-29227085

RESUMO

Strong Coulomb attraction in monolayer transition metal dichalcogenides gives rise to tightly bound excitons and many-body interactions that dominate their optoelectronic properties. However, this Coulomb interaction can be screened through control of the surrounding dielectric environment as well as through applied voltage, which provides a potential means of tuning the bandgap, exciton binding energy, and emission wavelength. Here, we directly show that the bandgap and exciton binding energy can be optically tuned by means of the intensity of the incident light. Using transient absorption spectroscopy, we identify a sub-picosecond decay component in the excited-state dynamics of WS2 that emerges for incident photon energies above the A-exciton resonance, which originates from a nonequilibrium population of charge carriers that form excitons as they cool. The generation of this charge-carrier population exhibits two distinct energy thresholds. The higher threshold is coincident with the onset of continuum states and therefore provides a direct optical means of determining both the bandgap and exciton binding energy. Using this technique, we observe a reduction in the exciton binding energy from 310 ± 30 to 220 ± 20 meV as the excitation density is increased from 3 × 1011 to 1.2 × 1012 photons/cm2. This reduction is due to dynamic dipolar screening of Coulomb interactions by excitons, which is the underlying physical process that initiates bandgap renormalization and leads to the insulator-metal transition in monolayer transition metal dichalcogenides.

12.
ACS Nano ; 11(8): 7988-7994, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28763189

RESUMO

Monolayer transition metal dichalcogenides are promising materials for valleytronic operations. They exhibit two inequivalent valleys in the Brillouin zone, and the valley populations can be directly controlled and determined using circularly polarized optical excitation and emission. The photoluminescence polarization reflects the ratio of the two valley populations. A wide range of values for the degree of circularly polarized emission, Pcirc, has been reported for monolayer WS2, although the reasons for the disparity are unclear. Here, we optically populate one valley and measure Pcirc to explore the valley population dynamics at room temperature in a large number of monolayer WS2 samples synthesized via chemical vapor deposition. Under resonant excitation, Pcirc ranges from 2 to 32%, and we observe a pronounced inverse relationship between photoluminescence (PL) intensity and Pcirc. High-quality samples exhibiting strong PL and long exciton relaxation time exhibit a low degree of valley polarization, and vice versa. This behavior is also demonstrated in monolayer WSe2 samples and transferred WS2, indicating that this correlation may be more generally observed and account for the wide variations reported for Pcirc. Time-resolved PL provides insight into the role of radiative and nonradiative contributions to the observed polarization. Short nonradiative lifetimes result in a higher measured polarization by limiting opportunity for depolarizing scattering events.

13.
Sci Rep ; 7(1): 3836, 2017 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-28630447

RESUMO

Electron-donors can impart charge to the surface of transition metal dichalcogenide (TMD) films while interacting with the film via a weak physisorption bond, making them ideal for vapor and gas sensors. We expose monolayer MoS2 and MoSe2 films to strong electron-donor chemical vapor analytes. After analyzing the resultant behavior and taking into consideration doping effects, we conclude that exposure to strong electron-donors could be a method of inducing the semiconductor-metal 2H-1T TMD phase transition. We find that the conductance response to strong electron donors in both monolayer MoS2 and MoSe2 FET devices ceases after moderate exposure, with final value of the conductance being on order of that expected for the 1T phase. Full device relaxation back to a semiconducting state is accomplished by annealing in vacuum at 400 °C. We also examine chemically exposed TMD films intermittently interrogated with Raman and photoluminescence spectroscopy. We observe the appearance of weak characteristic 1T phase Raman features for MoS2 and we observed a quenching of the photoluminescence of both TMD films that is recoverable with annealing. Considering all of our data together, the effects cannot be described by doping alone. Additionally, our results suggest a mechanism for a new type of passive chemical vapor sensor.

14.
Sci Rep ; 6: 35154, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752042

RESUMO

We report on preparation dependent properties observed in monolayer WS2 samples synthesized via chemical vapor deposition (CVD) on a variety of common substrates (Si/SiO2, sapphire, fused silica) as well as samples that were transferred from the growth substrate onto a new substrate. The as-grown CVD materials (as-WS2) exhibit distinctly different optical properties than transferred WS2 (x-WS2). In the case of CVD growth on Si/SiO2, following transfer to fresh Si/SiO2 there is a ~50 meV shift of the ground state exciton to higher emission energy in both photoluminescence emission and optical reflection. This shift is indicative of a reduction in tensile strain by ~0.25%. Additionally, the excitonic state in x-WS2 is easily modulated between neutral and charged exciton by exposure to moderate laser power, while such optical control is absent in as-WS2 for all growth substrates investigated. Finally, we observe dramatically different laser power-dependent behavior for as-grown and transferred WS2. These results demonstrate a strong sensitivity to sample preparation that is important for both a fundamental understanding of these novel materials as well as reliable reproduction of device properties.

15.
Nanoscale ; 8(22): 11445-53, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27194452

RESUMO

Ultra-thin transition metal dichalcogenides (TMDs) films show remarkable potential for use in chemical vapor sensing devices. Electronic devices fabricated from TMD films are inexpensive, inherently flexible, low-power, amenable to industrial-scale processing because of emergent growth techniques, and have shown high sensitivity and selectivity to electron donor analyte molecules important for explosives and nerve gas detection. However, for devices reported to date, the conductance response to chemical vapors is dominated by Schottky contacts, to the detriment of the sensitivity, selectivity, recovery, and obscuring their intrinsic behavior. Here, we use contact engineering to transition the contacts in a MoS2 FET-based chemical vapor sensor to the 1T conducting phase, while leaving the channel in the 2H semiconducting state, and thus providing Ohmic contacts to the film. We demonstrate that the resultant sensors have much improved electrical characteristics, are more selective, and recover fully after chemical vapor exposure-all major enhancements to previously MoS2 sensor devices. We identify labile nitrogen-containing electron donors as the primary species that generate a response in MoS2, and we study the dynamics of the sensing reactions, identifying two possible qualitative models for the chemical sensing reaction.

16.
Sci Rep ; 6: 19159, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26758908

RESUMO

Monolayer WS2 offers great promise for use in optical devices due to its direct bandgap and high photoluminescence intensity. While fundamental investigations can be performed on exfoliated material, large-area and high quality materials are essential for implementation of technological applications. In this work, we synthesize monolayer WS2 under various controlled conditions and characterize the films using photoluminescence, Raman and x-ray photoelectron spectroscopies. We demonstrate that the introduction of hydrogen to the argon carrier gas dramatically improves the optical quality and increases the growth area of WS2, resulting in films exhibiting mm(2) coverage. The addition of hydrogen more effectively reduces the WO3 precursor and protects against oxidative etching of the synthesized monolayers. The stoichiometric WS2 monolayers synthesized using Ar + H2 carrier gas exhibit superior optical characteristics, with photoluminescence emission full width half maximum (FWHM) values below 40 meV and emission intensities nearly an order of magnitude higher than films synthesized in a pure Ar environment.

17.
Sci Rep ; 4: 6191, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25155873

RESUMO

The interaction between surface plasmons (SP) and magnetic behavior has generated great research interest due to its potential for future magneto-optical devices with ultra-high sensitivity and ultra-fast switching. Here we combine two surface sensitive effects: magnetic second-harmonic generation (MSHG) and SP to enhance the detection sensitivity of the surface magnetization in a single-crystal iron film. We show that the MSHG signal can be significantly enhanced by SP in an attenuated total reflection (ATR) condition, and that the magnetic contrast can be varied over a wide range by the angle-of-incidence. Furthermore, the magnetic contrast of transverse and longitudinal MSHG display opposite trends, which originates from the change of relative phase between MSHG components. This new effect enhances the sensing of magnetic switching, which has potential usage in quaternary magnetic storage systems and bio-chemical sensors due to its very high surface sensitivity and simple structure.

18.
Opt Express ; 21(23): 28842-8, 2013 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-24514397

RESUMO

We present experimental studies on surface plasmon (SP) enhanced transverse magnetic second-harmonic generation (T-MSHG) in single-crystal iron films grown by molecular beam epitaxy at room temperature on MgO (001) substrates. We show that it is possible to achieve both strongly enhanced T-MSHG intensity and high magnetic contrast ratio under attenuated total reflection configuration without using complex heterostructures because MSHG is generated directly at the iron surface where SPs are present. The T-MSHG has a much larger contrast ratio than transverse magneto-optical Kerr effect (T-MOKE) and shows great potential for a new generation of bio-chemical sensors due to its very high surface sensitivity. In addition, by analyzing the experimental results and the simulations based on SP field-enhancement theory, we demonstrate that the second-order susceptibility of MSHG shows great anisotropy and the tensor χ(xzz)(odd) is dominant in our sample.

19.
Phys Rev Lett ; 96(19): 196101, 2006 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-16803113

RESUMO

We combine Z-contrast scanning transmission electron microscopy with density-functional-theory calculations to determine the atomic structure of the interface in spin-polarized light-emitting diodes. A 44% increase in spin-injection efficiency occurs after a low-temperature anneal, which produces an ordered, coherent interface consisting of a single atomic plane of alternating Fe and As atoms. First-principles transport calculations indicate that the increase in spin-injection efficiency is due to the abruptness and coherency of the annealed interface.

20.
Nat Mater ; 3(11): 799-803, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15502834

RESUMO

The use of carrier spin in semiconductors is a promising route towards new device functionality and performance. Ferromagnetic semiconductors (FMSs) are promising materials in this effort. An n-type FMS that can be epitaxially grown on a common device substrate is especially attractive. Here, we report electrical injection of spin-polarized electrons from an n-type FMS, CdCr(2)Se(4), into an AlGaAs/GaAs-based light-emitting diode structure. An analysis of the electroluminescence polarization based on quantum selection rules provides a direct measure of the sign and magnitude of the injected electron spin polarization. The sign reflects minority rather than majority spin injection, consistent with our density-functional-theory calculations of the CdCr(2)Se(4) conduction-band edge. This approach confirms the exchange-split band structure and spin-polarized carrier population of an FMS, and demonstrates a litmus test for these FMS hallmarks that discriminates against spurious contributions from magnetic precipitates.


Assuntos
Compostos Férricos , Magnetismo , Semicondutores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...