Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-493925

RESUMO

Infection by Coronavirus SARS-CoV2 is a severe and often deadly disease that has implications for the respiratory system and multiple organs across the human body. While the effects in the lung have been extensively studied, less is known about COVID-19s cellular impact across other organs. Here we contribute a single-nuclei RNA sequencing atlas comprising six human organs across 20 autopsies where we analyzed the transcriptional changes due to COVID-19 in multiple cell types. Computational cross-organ analysis for endothelial cells and macrophages identified systemic transcriptional changes in these cell types in COVID-19 samples. In addition, analysis of signaling pathways from multiple datasets showed several systemic dysregulations of signaling interaction in different cell types. Altogether, the COVID Tissue Atlas enables the investigation of both cell type-specific and cross-organ transcriptional responses to COVID-19, providing insights into the molecular networks affected by the disease and highlighting novel potential targets for therapies and drug development.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-056259

RESUMO

The COVID-19 pandemic has spread across more than 200 countries and resulted in over 170,000 deaths. For unclear reasons, higher mortality rates from COVID-19 have been reported in men compared to women. While the SARS-CoV-2 receptor ACE2 and serine protease TMPRSS2 have been detected in lung and other tissues, it is not clear what sex differences may exist. We analyzed a publicly-available normal human prostate single-cell RNA sequencing dataset and found TMPRSS2 and ACE2 co-expressing cells in epithelial cells, with a higher proportion in club and hillock cells. Then we investigated datasets of lung epithelial cells and also found club cells co-expressing TMPRSS2 and ACE2. A comparison of ACE2 expression in lung tissue between males and females showed higher expression in males and a larger proportion of ACE2+ cells in male type II pneumocytes, with preliminary evidence that type II pneumocytes of all lung epithelial cell types showed the highest expression of ACE2. These results raise the possibility that sex differences in ACE2 expression and the presence of double-positive cells in the prostate may contribute to the observed disparities of COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA