Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Trends Parasitol ; 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38760258

RESUMO

Insecticide resistance in malaria vector populations poses a major threat to malaria control, which relies largely on insecticidal interventions. Contemporary vector-control strategies focus on combatting resistance using multiple insecticides with differing modes of action within the mosquito. However, diverse genetic resistance mechanisms are present in vector populations, and continue to evolve. Knowledge of the spatial distribution of these genetic mechanisms, and how they impact the efficacy of different insecticidal products, is critical to inform intervention deployment decisions. We developed a catalogue of genetic-resistance mechanisms in African malaria vectors that could guide molecular surveillance. We highlight situations where intervention deployment has led to resistance evolution and spread, and identify challenges in understanding and mitigating the epidemiological impacts of resistance.

2.
Malar J ; 23(1): 156, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38773487

RESUMO

Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measurement of genetic efficacy, or on broader aspects of the causal pathway. Statistical and modelling tools are currently under active development and will inform such decisions on initial trial design, locations, and endpoints. Collectively, the considerations here advance the realization of developer ambitions for the first field trials of low-threshold gene drive for malaria vector control within the next 5 years.


Assuntos
Anopheles , Tecnologia de Impulso Genético , Malária , Controle de Mosquitos , Mosquitos Vetores , Controle de Mosquitos/métodos , Mosquitos Vetores/genética , Malária/prevenção & controle , Malária/transmissão , Animais , Anopheles/genética , Tecnologia de Impulso Genético/métodos
3.
BMC Biol ; 20(1): 46, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35164747

RESUMO

BACKGROUND: Resistance in malaria vectors to pyrethroids, the most widely used class of insecticides for malaria vector control, threatens the continued efficacy of vector control tools. Target-site resistance is an important genetic resistance mechanism caused by mutations in the voltage-gated sodium channel (Vgsc) gene that encodes the pyrethroid target-site. Understanding the geographic distribution of target-site resistance, and temporal trends across different vector species, can inform strategic deployment of vector control tools. RESULTS: We develop a Bayesian statistical spatiotemporal model to interpret species-specific trends in the frequency of the most common resistance mutations, Vgsc-995S and Vgsc-995F, in three major malaria vector species Anopheles gambiae, An. coluzzii, and An. arabiensis over the period 2005-2017. The models are informed by 2418 observations of the frequency of each mutation in field sampled mosquitoes collected from 27 countries spanning western and eastern regions of Africa. For nine selected countries, we develop annual predictive maps which reveal geographically structured patterns of spread of each mutation at regional and continental scales. The results show associations, as well as stark differences, in spread dynamics of the two mutations across the three vector species. The coverage of ITNs was an influential predictor of Vgsc allele frequencies, with modelled relationships between ITN coverage and allele frequencies varying across species and geographic regions. We found that our mapped Vgsc allele frequencies are a significant partial predictor of phenotypic resistance to the pyrethroid deltamethrin in An. gambiae complex populations. CONCLUSIONS: Our predictive maps show how spatiotemporal trends in insecticide target-site resistance mechanisms in African An. gambiae vary across individual vector species and geographic regions. Molecular surveillance of resistance mechanisms will help to predict resistance phenotypes and track their spread.


Assuntos
Anopheles , Inseticidas , Malária , Animais , Anopheles/genética , Teorema de Bayes , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária/prevenção & controle , Mosquitos Vetores/genética , Mutação
4.
Sci Adv ; 7(31)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34330703

RESUMO

Several thousand people die every year worldwide because of terrorist attacks perpetrated by non-state actors. In this context, reliable and accurate short-term predictions of non-state terrorism at the local level are key for policy makers to target preventative measures. Using only publicly available data, we show that predictive models that include structural and procedural predictors can accurately predict the occurrence of non-state terrorism locally and a week ahead in regions affected by a relatively high prevalence of terrorism. In these regions, theoretically informed models systematically outperform models using predictors built on past terrorist events only. We further identify and interpret the local effects of major global and regional terrorism drivers. Our study demonstrates the potential of theoretically informed models to predict and explain complex forms of political violence at policy-relevant scales.

5.
Sci Rep ; 11(1): 13457, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34188090

RESUMO

Anopheles funestus is playing an increasing role in malaria transmission in parts of sub-Saharan Africa, where An. gambiae s.s. has been effectively controlled by long-lasting insecticidal nets. We investigated vector population bionomics, insecticide resistance and malaria transmission dynamics in 86 study clusters in North-West Tanzania. An. funestus s.l. represented 94.5% (4740/5016) of all vectors and was responsible for the majority of malaria transmission (96.5%), with a sporozoite rate of 3.4% and average monthly entomological inoculation rate (EIR) of 4.57 per house. Micro-geographical heterogeneity in species composition, abundance and transmission was observed across the study district in relation to key ecological differences between northern and southern clusters, with significantly higher densities, proportions and EIR of An. funestus s.l. collected from the South. An. gambiae s.l. (5.5%) density, principally An. arabiensis (81.1%) and An. gambiae s.s. (18.9%), was much lower and closely correlated with seasonal rainfall. Both An. funestus s.l. and An. gambiae s.l. were similarly resistant to alpha-cypermethrin and permethrin. Overexpression of CYP9K1, CYP6P3, CYP6P4 and CYP6M2 and high L1014S-kdr mutation frequency were detected in An. gambiae s.s. populations. Study findings highlight the urgent need for novel vector control tools to tackle persistent malaria transmission in the Lake Region of Tanzania.


Assuntos
Anopheles , Resistência a Inseticidas/etnologia , Malária/transmissão , Controle de Mosquitos , Mosquitos Vetores , Piretrinas/farmacologia , Animais , Anopheles/genética , Anopheles/parasitologia , Proteínas de Insetos/genética , Resistência a Inseticidas/efeitos dos fármacos , Lagos , Malária/epidemiologia , Mosquitos Vetores/genética , Mosquitos Vetores/parasitologia , Mutação/genética , Tanzânia
6.
BMJ Glob Health ; 6(3)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33762253

RESUMO

Early on in the COVID-19 pandemic, the WHO Eastern Mediterranean Regional Office recognised the importance of epidemiological modelling to forecast the progression of the COVID-19 pandemic to support decisions guiding the implementation of response measures. We established a modelling support team to facilitate the application of epidemiological modelling analyses in the Eastern Mediterranean Region (EMR) countries. Here, we present an innovative, stepwise approach to participatory modelling of the COVID-19 pandemic that engaged decision-makers and public health professionals from countries throughout all stages of the modelling process. Our approach consisted of first identifying the relevant policy questions, collecting country-specific data and interpreting model findings from a decision-maker's perspective, as well as communicating model uncertainty. We used a simple modelling methodology that was adaptable to the shortage of epidemiological data, and the limited modelling capacity, in our region. We discuss the benefits of using models to produce rapid decision-making guidance for COVID-19 control in the WHO EMR, as well as challenges that we have experienced regarding conveying uncertainty associated with model results, synthesising and comparing results across multiple modelling approaches, and modelling fragile and conflict-affected states.


Assuntos
COVID-19/epidemiologia , Controle de Doenças Transmissíveis/organização & administração , Tomada de Decisões , Métodos Epidemiológicos , Saúde Pública , Humanos , Região do Mediterrâneo/epidemiologia , Pandemias , SARS-CoV-2
7.
Proc Natl Acad Sci U S A ; 117(36): 22042-22050, 2020 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-32843339

RESUMO

Malaria vector control may be compromised by resistance to insecticides in vector populations. Actions to mitigate against resistance rely on surveillance using standard susceptibility tests, but there are large gaps in the monitoring data across Africa. Using a published geostatistical ensemble model, we have generated maps that bridge these gaps and consider the likelihood that resistance exceeds recommended thresholds. Our results show that this model provides more accurate next-year predictions than two simpler approaches. We have used the model to generate district-level maps for the probability that pyrethroid resistance in Anopheles gambiae s.l. exceeds the World Health Organization thresholds for susceptibility and confirmed resistance. In addition, we have mapped the three criteria for the deployment of piperonyl butoxide-treated nets that mitigate against the effects of metabolic resistance to pyrethroids. This includes a critical review of the evidence for presence of cytochrome P450-mediated metabolic resistance mechanisms across Africa. The maps for pyrethroid resistance are available on the IR Mapper website, where they can be viewed alongside the latest survey data.


Assuntos
Anopheles/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Malária/transmissão , Controle de Mosquitos/métodos , Mosquitos Vetores/efeitos dos fármacos , África , Animais , Anopheles/fisiologia , Humanos , Mosquiteiros Tratados com Inseticida , Mosquitos Vetores/fisiologia , Piretrinas/farmacologia
8.
PLoS Biol ; 18(6): e3000633, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32584814

RESUMO

Mitigating the threat of insecticide resistance in African malaria vector populations requires comprehensive information about where resistance occurs, to what degree, and how this has changed over time. Estimating these trends is complicated by the sparse, heterogeneous distribution of observations of resistance phenotypes in field populations. We use 6,423 observations of the prevalence of resistance to the most important vector control insecticides to inform a Bayesian geostatistical ensemble modelling approach, generating fine-scale predictive maps of resistance phenotypes in mosquitoes from the Anopheles gambiae complex across Africa. Our models are informed by a suite of 111 predictor variables describing potential drivers of selection for resistance. Our maps show alarming increases in the prevalence of resistance to pyrethroids and DDT across sub-Saharan Africa from 2005 to 2017, with mean mortality following insecticide exposure declining from almost 100% to less than 30% in some areas, as well as substantial spatial variation in resistance trends.


Assuntos
Resistência a Inseticidas , Malária/parasitologia , Mosquitos Vetores/parasitologia , África , DDT/toxicidade , Resistência a Inseticidas/efeitos dos fármacos , Aprendizado de Máquina , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/toxicidade , Fenótipo , Prevalência , Piretrinas/toxicidade , Análise Espaço-Temporal
9.
Sci Data ; 6(1): 121, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31308378

RESUMO

The impact of insecticide resistance in malaria vectors is poorly understood and quantified. Here a series of geospatial datasets for insecticide resistance in malaria vectors are provided, so that trends in resistance in time and space can be quantified, and the impact of resistance found in wild populations on malaria transmission in Africa can be assessed. Specifically, data have been collated and geopositioned for the prevalence of insecticide resistance, as measured by standard bioassays, in representative samples of individual species or species complexes. Data are provided for the Anopheles gambiae species complex, the Anopheles funestus subgroup, and for nine individual vector species. Data are also given for common genetic markers of resistance to support analyses of whether these markers can improve the ability to monitor resistance in low resource settings. Allele frequencies for known resistance-associated markers in the Voltage-gated sodium channel (Vgsc) are provided. In total, eight analysis-ready, standardised, geopositioned datasets encompassing over 20,000 African mosquito collections between 1957 and 2017 are released.


Assuntos
Anopheles/genética , Resistência a Inseticidas/genética , Mosquitos Vetores/genética , África , Animais , Marcadores Genéticos , Genótipo , Geografia , Inseticidas , Malária , Fenótipo
10.
Proc Natl Acad Sci U S A ; 115(23): 5938-5943, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784773

RESUMO

The development of insecticide resistance in African malaria vectors threatens the continued efficacy of important vector control methods that rely on a limited set of insecticides. To understand the operational significance of resistance we require quantitative information about levels of resistance in field populations to the suite of vector control insecticides. Estimation of resistance is complicated by the sparsity of observations in field populations, variation in resistance over time and space at local and regional scales, and cross-resistance between different insecticide types. Using observations of the prevalence of resistance in mosquito species from the Anopheles gambiae complex sampled from 1,183 locations throughout Africa, we applied Bayesian geostatistical models to quantify patterns of covariation in resistance phenotypes across different insecticides. For resistance to the three pyrethroids tested, deltamethrin, permethrin, and λ-cyhalothrin, we found consistent forms of covariation across sub-Saharan Africa and covariation between resistance to these pyrethroids and resistance to DDT. We found no evidence of resistance interactions between carbamate and organophosphate insecticides or between these insecticides and those from other classes. For pyrethroids and DDT we found significant associations between predicted mean resistance and the observed frequency of kdr mutations in the Vgsc gene in field mosquito samples, with DDT showing the strongest association. These results improve our capacity to understand and predict resistance patterns throughout Africa and can guide the development of monitoring strategies.


Assuntos
Culicidae/efeitos dos fármacos , Genes de Insetos/genética , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Malária , Mosquitos Vetores/efeitos dos fármacos , Animais , DDT/farmacologia , Malária/prevenção & controle , Malária/transmissão , Modelos Estatísticos , Nitrilas/farmacologia , Permetrina/farmacologia , Piretrinas/farmacologia
11.
BMC Biol ; 14(1): 96, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27825343

RESUMO

BACKGROUND: Arbovirus transmission by the mosquito Aedes aegypti can be reduced by the introduction and establishment of the endosymbiotic bacteria Wolbachia in wild populations of the vector. Wolbachia spreads by increasing the fitness of its hosts relative to uninfected mosquitoes. However, mosquito fitness is also strongly affected by population size through density-dependent competition for limited food resources. We do not understand how this natural variation in fitness affects symbiont spread, which limits our ability to design successful control strategies. RESULTS: We develop a mathematical model to predict A. aegypti-Wolbachia dynamics that incorporates larval density-dependent variation in important fitness components of infected and uninfected mosquitoes. Our model explains detailed features of the mosquito-Wolbachia dynamics observed in two independent experimental A. aegypti populations, allowing the combined effects on dynamics of multiple density-dependent fitness components to be characterized. We apply our model to investigate Wolbachia field release dynamics, and show how invasion outcomes can depend strongly on the severity of density-dependent competition at the release site. Specifically, the ratio of released relative to wild mosquitoes required to attain a target infection frequency (at the end of a release program) can vary by nearly an order of magnitude. The time taken for Wolbachia to become established following releases can differ by over 2 years. These effects depend on the relative fitness of field and insectary-reared mosquitoes. CONCLUSIONS: Models of Wolbachia invasion incorporating density-dependent demographic variation in the host population explain observed dynamics in experimental A. aegypti populations. These models predict strong effects of density-dependence on Wolbachia dynamics in field populations, and can assist in the effective use of Wolbachia to control the transmission of arboviruses such as dengue, chikungunya and zika.


Assuntos
Aedes/microbiologia , Modelos Teóricos , Wolbachia/patogenicidade , Animais , Teorema de Bayes , Zika virus/patogenicidade
12.
J Appl Ecol ; 52(6): 1558-1566, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26792946

RESUMO

The effectiveness of conventional malaria vector control is being threatened by the spread of insecticide resistance. One promising alternative to chemicals is the use of naturally-occurring insect-killing fungi. Numerous laboratory studies have shown that isolates of fungal pathogens such as Beauveria bassiana can infect and kill adult mosquitoes, including those resistant to chemical insecticides.Unlike chemical insecticides, fungi may take up to a week or more to kill mosquitoes following exposure. This slow kill speed can still reduce malaria transmission because the malaria parasite itself takes at least eight days to complete its development within the mosquito. However, both fungal virulence and parasite development rate are strongly temperature-dependent, so it is possible that biopesticide efficacy could vary across different transmission environments.We examined the virulence of a candidate fungal isolate against two key malaria vectors at temperatures from 10-34 °C. Regardless of temperature, the fungus killed more than 90% of exposed mosquitoes within the predicted duration of the malarial extrinsic incubation period, a result that was robust to realistic diurnal temperature variation.We then incorporated temperature sensitivities of a suite of mosquito, parasite and fungus life-history traits that are important determinants of malaria transmission into a stage-structured malaria transmission model. The model predicted that, at achievable daily fungal infection rates, fungal biopesticides have the potential to deliver substantial reductions in the density of malaria-infectious mosquitoes across all temperatures representative of malaria transmission environments.Synthesis and applications. Our study combines empirical data and theoretical modelling to prospectively evaluate the potential of fungal biopesticides to control adult malaria vectors. Our results suggest that Beauveria bassiana could be a potent tool for malaria control and support further development of fungal biopesticides to manage infectious disease vectors.

13.
PLoS Comput Biol ; 10(9): e1003809, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25211122

RESUMO

Prediction and control of the spread of infectious disease in human populations benefits greatly from our growing capacity to quantify human movement behavior. Here we develop a mathematical model for non-transmissible infections contracted from a localized environmental source, informed by a detailed description of movement patterns of the population of Great Britain. The model is applied to outbreaks of Legionnaires' disease, a potentially life-threatening form of pneumonia caused by the bacteria Legionella pneumophilia. We use case-report data from three recent outbreaks that have occurred in Great Britain where the source has already been identified by public health agencies. We first demonstrate that the amount of individual-level heterogeneity incorporated in the movement data greatly influences our ability to predict the source location. The most accurate predictions were obtained using reported travel histories to describe movements of infected individuals, but using detailed simulation models to estimate movement patterns offers an effective fast alternative. Secondly, once the source is identified, we show that our model can be used to accurately determine the population likely to have been exposed to the pathogen, and hence predict the residential locations of infected individuals. The results give rise to an effective control strategy that can be implemented rapidly in response to an outbreak.


Assuntos
Biologia Computacional/métodos , Surtos de Doenças/estatística & dados numéricos , Doença dos Legionários/epidemiologia , Modelos Teóricos , Vigilância da População/métodos , Bases de Dados Factuais , Feminino , Humanos , Masculino , Reino Unido/epidemiologia
14.
J R Soc Interface ; 9(76): 3045-54, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-22675165

RESUMO

The endosymbiont Wolbachia infects a large number of insect species and is capable of rapid spread when introduced into a novel host population. The bacteria spread by manipulating their hosts' reproduction, and their dynamics are influenced by the demographic structure of the host population and patterns of contact between individuals. Reaction-diffusion models of the spatial spread of Wolbachia provide a simple analytical description of their spatial dynamics but do not account for significant details of host population dynamics. We develop a metapopulation model describing the spatial dynamics of Wolbachia in an age-structured host insect population regulated by juvenile density-dependent competition. The model produces similar dynamics to the reaction-diffusion model in the limiting case where the host's habitat quality is spatially homogeneous and Wolbachia has a small effect on host fitness. When habitat quality varies spatially, Wolbachia spread is usually much slower, and the conditions necessary for local invasion are strongly affected by immigration of insects from surrounding regions. Spread is most difficult when variation in habitat quality is spatially correlated. The results show that spatial variation in the density-dependent competition experienced by juvenile host insects can strongly affect the spread of Wolbachia infections, which is important to the use of Wolbachia to control insect vectors of human disease and other pests.


Assuntos
Meio Ambiente , Insetos/microbiologia , Modelos Biológicos , Simbiose , Wolbachia/crescimento & desenvolvimento , Fatores Etários , Animais , Interações Hospedeiro-Patógeno , Densidade Demográfica , Dinâmica Populacional
15.
Malar J ; 11: 87, 2012 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-22449130

RESUMO

BACKGROUND: Control of mosquitoes that transmit malaria has been the mainstay in the fight against the disease, but alternative methods are required in view of emerging insecticide resistance. Entomopathogenic fungi are candidate alternatives, but to date, few trials have translated the use of these agents to field-based evaluations of their actual impact on mosquito survival and malaria risk. Mineral oil-formulations of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana were applied using five different techniques that each exploited the behaviour of malaria mosquitoes when entering, host-seeking or resting in experimental huts in a malaria endemic area of rural Tanzania. RESULTS: Survival of mosquitoes was reduced by 39-57% relative to controls after forcing upward house-entry of mosquitoes through fungus treated baffles attached to the eaves or after application of fungus-treated surfaces around an occupied bed net (bed net strip design). Moreover, 68 to 76% of the treatment mosquitoes showed fungal growth and thus had sufficient contact with fungus treated surfaces. A population dynamic model of malaria-mosquito interactions shows that these infection rates reduce malaria transmission by 75-80% due to the effect of fungal infection on adult mortality alone. The model also demonstrated that even if a high proportion of the mosquitoes exhibits outdoor biting behaviour, malaria transmission was still significantly reduced. CONCLUSIONS: Entomopathogenic fungi strongly affect mosquito survival and have a high predicted impact on malaria transmission. These entomopathogens represent a viable alternative for malaria control, especially if they are used as part of an integrated vector management strategy.


Assuntos
Anopheles , Beauveria/fisiologia , Agentes de Controle Biológico , Comportamento Alimentar/fisiologia , Insetos Vetores , Metarhizium/fisiologia , Controle de Mosquitos , Animais , Anopheles/microbiologia , Anopheles/fisiologia , Feminino , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia , Mosquiteiros Tratados com Inseticida , Malária/transmissão , Análise de Sobrevida , Tanzânia
16.
PLoS Negl Trop Dis ; 5(4): e1024, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21541357

RESUMO

Certain strains of the endosymbiont Wolbachia have the potential to lower the vectorial capacity of mosquito populations and assist in controlling a number of mosquito-borne diseases. An important consideration when introducing Wolbachia-carrying mosquitoes into natural populations is the minimisation of any transient increase in disease risk or biting nuisance. This may be achieved by predominantly releasing male mosquitoes. To explore this, we use a sex-structured model of Wolbachia-mosquito interactions. We first show that Wolbachia spread can be initiated with very few infected females provided the infection frequency in males exceeds a threshold. We then consider realistic introduction scenarios involving the release of batches of infected mosquitoes, incorporating seasonal fluctuations in population size. For a range of assumptions about mosquito population dynamics we find that male-biased releases allow the infection to spread after the introduction of low numbers of females, many fewer than with equal sex-ratio releases. We extend the model to estimate the transmission rate of a mosquito-borne pathogen over the course of Wolbachia establishment. For a range of release strategies we demonstrate that male-biased release of Wolbachia-infected mosquitoes can cause substantial transmission reductions without transiently increasing disease risk. The results show the importance of including mosquito population dynamics in studying Wolbachia spread and that male-biased releases can be an effective and safe way of rapidly establishing the symbiont in mosquito populations.


Assuntos
Culicidae/microbiologia , Controle de Insetos/métodos , Controle Biológico de Vetores/métodos , Wolbachia/patogenicidade , Animais , Feminino , Masculino , Modelos Estatísticos
17.
Am Nat ; 177(3): 323-33, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21460541

RESUMO

Wolbachia are endosymbionts that are found in many insect species and can spread rapidly when introduced into a naive host population. Most Wolbachia spread when their infection frequency exceeds a threshold normally calculated using purely population genetic models. However, spread may also depend on the population dynamics of the insect host. We develop models to explore interactions between host population dynamics and Wolbachia infection frequency for an age-structured insect population regulated by larval density dependence. We first derive a new expression for the threshold frequency that extends existing theory to incorporate important details of the insect's life history. In the presence of immigration and emigration, the threshold also depends on the form of density-dependent regulation. We show how the type of immigration (constant or pulsed) and the temporal dynamics of the host population can strongly affect the spread of Wolbachia. The results help understand the natural dynamics of Wolbachia infections and aid the design of programs to introduce Wolbachia to control insects that are disease vectors or pests.


Assuntos
Aedes/microbiologia , Modelos Biológicos , Simbiose , Wolbachia , Migração Animal , Animais , Interações Hospedeiro-Patógeno , Insetos Vetores/microbiologia , Estágios do Ciclo de Vida , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
18.
Int J Parasitol ; 41(5): 513-22, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21295037

RESUMO

Seasonal variation in temperature is known to drive annual patterns of tick activity and can influence the dynamics of tick-borne diseases. An age-structured model of the dynamics of Ixodes ricinus populations was developed to explore how changes in average temperature and different levels of temperature variability affect seasonal patterns of tick activity and the transmission of tick-borne diseases. The model produced seasonal patterns of tick emergence that are consistent with those observed throughout Great Britain. Varying average temperature across a continuous spectrum produced a systematic pattern in the times of peak emergence of questing ticks which depends on cumulative temperature over the year. Examination of the effects of between-year stochastic temperature variation on this pattern indicated that peak emergence times are more strongly affected by temperature stochasticity at certain levels of average temperature. Finally the model was extended to give a simple representation of the dynamics of a tick-borne disease. A threshold level of annual cumulative temperature was identified at which disease persistence is sensitive to stochastic temperature variation. In conclusion, the effect of changing patterns of temperature variation on the dynamics of I. ricinus ticks and the diseases they transmit may depend on the cumulative temperature over the year and will therefore vary across different locations. The results also indicate that diapause mechanisms have an important influence on seasonal patterns of tick activity and require further study.


Assuntos
Ixodes/fisiologia , Animais , Ecossistema , Ixodes/crescimento & desenvolvimento , Modelos Biológicos , Estações do Ano , Temperatura
19.
PLoS Comput Biol ; 5(10): e1000525, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19798436

RESUMO

In developing strategies to control malaria vectors, there is increased interest in biological methods that do not cause instant vector mortality, but have sublethal and lethal effects at different ages and stages in the mosquito life cycle. These techniques, particularly if integrated with other vector control interventions, may produce substantial reductions in malaria transmission due to the total effect of alterations to multiple life history parameters at relevant points in the life-cycle and transmission-cycle of the vector. To quantify this effect, an analytically tractable gonotrophic cycle model of mosquito-malaria interactions is developed that unites existing continuous and discrete feeding cycle approaches. As a case study, the combined use of fungal biopesticides and insecticide treated bednets (ITNs) is considered. Low values of the equilibrium EIR and human prevalence were obtained when fungal biopesticides and ITNs were combined, even for scenarios where each intervention acting alone had relatively little impact. The effect of the combined interventions on the equilibrium EIR was at least as strong as the multiplicative effect of both interventions. For scenarios representing difficult conditions for malaria control, due to high transmission intensity and widespread insecticide resistance, the effect of the combined interventions on the equilibrium EIR was greater than the multiplicative effect, as a result of synergistic interactions between the interventions. Fungal biopesticide application was found to be most effective when ITN coverage was high, producing significant reductions in equilibrium prevalence for low levels of biopesticide coverage. By incorporating biological mechanisms relevant to vectorial capacity, continuous-time vector population models can increase their applicability to integrated vector management.


Assuntos
Roupas de Cama, Mesa e Banho/estatística & dados numéricos , Inseticidas/administração & dosagem , Malária/epidemiologia , Malária/prevenção & controle , Modelos Biológicos , Controle de Mosquitos/métodos , Controle Biológico de Vetores/estatística & dados numéricos , África/epidemiologia , Animais , Participação da Comunidade , Simulação por Computador , Tomada de Decisões , Setor de Assistência à Saúde , Implementação de Plano de Saúde , Humanos , Insetos Vetores , Malária/transmissão , Controle de Mosquitos/organização & administração , Controle Biológico de Vetores/métodos , Organização Mundial da Saúde
20.
Ecology ; 87(8): 2094-102, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16937648

RESUMO

Spatial movement models often base movement decision rules on traditional optimal foraging theories, including ideal free distribution (IFD) theory, more recently generalized as density-dependent habitat selection (DDHS) theory, and the marginal value theorem (MVT). Thus optimal patch departure times are predicted on the basis of the density-dependent resource level in the patch. Recently, alternatives to density as a habitat selection criterion, such as individual knowledge of the resource distribution, conspecific attraction, and site fidelity, have been recognized as important influences on movement behavior in environments with an uncertain resource distribution. For foraging processes incorporating these influences, it is not clear whether simple optimal foraging theories provide a reasonable approximation to animal behavior or whether they may be misleading. This study compares patch departure strategies predicted by DDHS theory and the MVT with evolutionarily optimal patch departure strategies for a wide range of foraging scenarios. The level of accuracy with which individuals can navigate toward local food sources is varied, and individual tendency for conspecific attraction or repulsion is optimized over a continuous spectrum. We find that DDHS theory and the MVT accurately predict the evolutionarily optimal patch departure strategy for foragers with high navigational accuracy for a wide range of resource distributions. As navigational accuracy is reduced, the patch departure strategy cannot be accurately predicted by these theories for environments with a heterogeneous resource distribution. In these situations, social forces improve foraging success and have a strong influence on optimal patch departure strategies, causing individuals to stay longer in patches than the optimal foraging theories predict.


Assuntos
Comportamento Alimentar , Modelos Teóricos , Animais , Ecossistema , Movimento , Densidade Demográfica , Comportamento Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...