Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1375958, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38766471

RESUMO

Carbohydrate reserves play a vital role in plant survival during periods of negative carbon balance. Under a carbon-limited scenario, we expect a trade-offs between carbon allocation to growth, reserves, and defense. A resulting hypothesis is that carbon allocation to reserves exhibits a coordinated variation with functional traits associated with the 'fast-slow' plant economics spectrum. We tested the relationship between non-structural carbohydrates (NSC) of tree organs and functional traits using 61 angiosperm tree species from temperate and tropical forests with phylogenetic hierarchical Bayesian models. Our results provide evidence that NSC concentrations in stems and branches are decoupled from plant functional traits. while those in roots are weakly coupled with plant functional traits. In contrast, we found that variation between NSC concentrations in leaves and the fast-slow trait spectrum was coordinated, as species with higher leaf NSC had trait values associated with resource conservative species, such as lower SLA, leaf N, and leaf P. We also detected a small effect of leaf habit on the variation of NSC concentrations in branches and roots. Efforts to predict the response of ecosystems to global change will need to integrate a suite of plant traits, such as NSC concentrations in woody organs, that are independent of the 'fast-slow' plant economics spectrum and that capture how species respond to a broad range of global change drivers.

2.
Ecol Evol ; 12(1): e8509, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35136558

RESUMO

Soil C is the largest C pool in forest ecosystems that contributes to C sequestration and mitigates climate change. Tree diversity enhances forest productivity, so diversifying the tree species composition, notably in managed forests, could increase the quantity of organic matter being transferred to soils and alter other soil properties relevant to the C cycle.A ten-year-old tree diversity experiment was used to study the effects of tree identity and diversity (functional and taxonomic) on soils. Surface (0-10 cm) mineral soil was repeatedly measured for soil C concentration, C:N ratio, pH, moisture, and temperature in twenty-four tree species mixtures and twelve corresponding monocultures (replicated in four blocks).Soil pH, moisture, and temperature responded to tree diversity and identity. Greater productivity in above- and below-ground tree components did not increase soil C concentration. Soil pH increased and soil moisture decreased with functional diversity, more specifically, when species had different growth strategies and shade tolerances. Functional identity affected soil moisture and temperature, such that tree communities with more slow-growing and shade-tolerant species had greater soil moisture and temperature. Higher temperature was measured in communities with broadleaf-deciduous species compared to communities with coniferous-evergreen species.We conclude that long-term soil C cycling in forest plantations will likely respond to changes in soil pH, moisture, and temperature that is mediated by tree species composition, since tree species affect these soil properties through their litter quality, water uptake, and physical control of soil microclimates.

3.
J Anim Ecol ; 87(5): 1209-1220, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29672855

RESUMO

The characterization of ecological communities with functional traits allows to consider simultaneously the ability of a species to survive and reproduce in an environment, its interactions with other species and its effects on the ecosystem. Functional traits have been studied mainly by plant ecologists, but are increasingly common in the study of other taxa including arthropods. Arthropods represent a group for which a functional trait approach could be highly profitable because of their high diversity, abundance, ubiquity and role in many important ecological processes. This review synthesizes two decades of functional trait research on terrestrial arthropods. We show that while the approach has gained popularity, particularly in the last decade, the absence of clearly postulated hypotheses is a recurrent problem limiting generalization. Furthermore, studied traits are often poorly related to studied functions. To address these problems, we propose a step-by-step protocol to postulate clear hypotheses prior to trait selection and emphasize the need for a common set of more generalizable traits in future studies. Extending the functional trait approach to arthropods opens the door to improving our understanding of interspecific interactions and potential links between response and effect traits. We present the concept of trait-matching with several examples of arthropod traits known to be effective predictors of consumer-resource interactions. The development of a successful functional trait approach for terrestrial arthropods will necessitate an understanding of relevant traits, standardized measurement protocols and open access databases to share this information. Such progress will provide ecologists with a new set of tools to answer broad questions in several fields including the study of community assembly, ecological networks and multitrophic functionality.


Assuntos
Artrópodes , Animais , Ecologia , Ecossistema , Fenótipo , Plantas
4.
Oecologia ; 171(3): 623-37, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23340765

RESUMO

We evaluated the impacts of elevated CO2 in a treeline ecosystem in the Swiss Alps in a 9-year free-air CO2 enrichment (FACE) study. We present new data and synthesize plant and soil results from the entire experimental period. Light-saturated photosynthesis (A max) of ca. 35-year-old Larix decidua and Pinus uncinata was stimulated by elevated CO2 throughout the experiment. Slight down-regulation of photosynthesis in Pinus was consistent with starch accumulation in needle tissue. Above-ground growth responses differed between tree species, with a 33 % mean annual stimulation in Larix but no response in Pinus. Species-specific CO2 responses also occurred for abundant dwarf shrub species in the understorey, where Vaccinium myrtillus showed a sustained shoot growth enhancement (+11 %) that was not apparent for Vaccinium gaultherioides or Empetrum hermaphroditum. Below ground, CO2 enrichment did not stimulate fine root or mycorrhizal mycelium growth, but increased CO2 effluxes from the soil (+24 %) indicated that enhanced C assimilation was partially offset by greater respiratory losses. The dissolved organic C (DOC) concentration in soil solutions was consistently higher under elevated CO2 (+14 %), suggesting accelerated soil organic matter turnover. CO2 enrichment hardly affected the C-N balance in plants and soil, with unaltered soil total or mineral N concentrations and little impact on plant leaf N concentration or the stable N isotope ratio. Sustained differences in plant species growth responses suggest future shifts in species composition with atmospheric change. Consistently increased C fixation, soil respiration and DOC production over 9 years of CO2 enrichment provide clear evidence for accelerated C cycling with no apparent consequences on the N cycle in this treeline ecosystem.


Assuntos
Dióxido de Carbono , Ecossistema , Árvores , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/crescimento & desenvolvimento , Solo/química , Microbiologia do Solo , Suíça
5.
New Phytol ; 191(3): 806-818, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21770945

RESUMO

• Rising CO2 concentrations and the associated global warming are expected to have large impacts on high-elevation ecosystems, yet long-term multifactor experiments in these environments are rare. • We investigated how growth of dominant dwarf shrub species (Vaccinium myrtillus, Vaccinium gaultherioides and Empetrum hermaphroditum) and community composition in the understorey of larch and pine trees responded to 9 yr of CO2 enrichment and 3 yr of soil warming at the treeline in the Swiss Alps. • Vaccinium myrtillus was the only species that showed a clear positive effect of CO2 on growth, with no decline over time in the annual shoot growth response. Soil warming stimulated V. myrtillus growth even more than elevated CO2 and was accompanied by increased plant-available soil nitrogen (N) and leaf N concentrations. Growth of Vaccinium gaultherioides and E. hermaphroditum was not influenced by warming. Vascular plant species richness declined in elevated CO2 plots with larch, while the number of moss and lichen species decreased under warming. • Ongoing environmental change could lead to less diverse plant communities and increased dominance of the particularly responsive V. myrtillus in the studied alpine treeline. These changes are the consequence of independent CO2 and soil warming effects, a result that should facilitate predictive modelling approaches.


Assuntos
Dióxido de Carbono/farmacologia , Ericaceae/fisiologia , Nitrogênio/metabolismo , Vaccinium/fisiologia , Ericaceae/anatomia & histologia , Ericaceae/crescimento & desenvolvimento , Nitrogênio/análise , Folhas de Planta/anatomia & histologia , Brotos de Planta/crescimento & desenvolvimento , Solo/química , Suíça , Temperatura , Vaccinium/crescimento & desenvolvimento
6.
New Phytol ; 189(4): 950-65, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21374832

RESUMO

Proper estimates of decomposition are essential for tropical forests, given their key role in the global carbon (C) cycle. However, the current paradigm for litter decomposition is insufficient to account for recent observations and may limit model predictions for highly diverse tropical ecosystems. In light of recent findings from a nutrient-poor Amazonian rainforest, we revisit the commonly held views that: litter traits are a mere legacy of live leaf traits; nitrogen (N) and lignin are the key litter traits controlling decomposition; and favourable climatic conditions result in rapid decomposition in tropical forests. Substantial interspecific variation in litter phosphorus (P) was found to be unrelated to variation in green leaves. Litter nutrients explained no variation in decomposition, which instead was controlled primarily by non-lignin litter C compounds at low concentrations with important soil fauna effects. Despite near-optimal climatic conditions, tropical litter decomposition proceeded more slowly than in a climatically less favourable temperate forest. We suggest that slow decomposition in the studied rainforest results from a syndrome of poor litter C quality beyond a simple lignin control, enforcing energy starvation of decomposers.We hypothesize that the litter trait syndrome in nutrient-poor tropical rainforests may have evolved to increase plant access to limiting nutrients via mycorrhizal associations.


Assuntos
Modelos Biológicos , Folhas de Planta/fisiologia , Característica Quantitativa Herdável , Árvores/fisiologia , Clima Tropical , Animais , Micorrizas/fisiologia , Folhas de Planta/microbiologia
7.
Biol Rev Camb Philos Soc ; 85(4): 881-95, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20412191

RESUMO

Millipedes (Diplopoda) and woodlice (Crustacea, Isopoda), with a total of about 15000 described species worldwide, contribute substantially to invertebrate biodiversity. These saprophagous macroarthropods, which are key regulators of plant litter decomposition, play an important role in the functioning of terrestrial ecosystems in tropical and temperate areas. Herein we review current knowledge on the effects of climate, food quality and land cover on millipede and woodlouse species to explore their potential responses to global change. Essentially similar trends are observed in the two taxa. Experiments have shown that climate warming could result in higher rates of population growth and have positive effects on the abundance of some temperate species. This is consistent with signs of northward expansion in Europe, although the mechanisms of dispersal remain unclear. The generality of this finding is evaluated in relation to the life histories and geographical distributions of species. At low latitudes, interactions with more severe droughts are likely and could affect community composition. Elevated atmospheric CO2 levels and changes in plant community composition are expected to alter leaf litter quality, a major determinant of macroarthropod fertility via the link with female adult body size. Although food quality changes have been shown to influence population growth rates significantly, it is proposed that the effects of warming will be probably more important during the coming decades. Land cover changes, mainly due to deforestation in the tropics and land abandonment in Europe, are critical to habitat specialists and could override any other effect of global change. Habitat destruction by man may be the main threat to macroarthropod species, many of which are narrow endemics. At the landscape scale, habitat heterogeneity could be a good option for conservation, even at the cost of some fragmentation. Two principal areas are identified which require further work: (i) the effects of climate change across broader geographic ranges, and on species with different ecologies and life histories; (ii) the effects of global change on both macroarthropods and their natural enemies (predators, parasites and pathogens), to improve predictions in field situations.


Assuntos
Artrópodes/fisiologia , Mudança Climática , Isópodes/fisiologia , Animais , Conservação dos Recursos Naturais , Ecossistema , Cadeia Alimentar , Crescimento Demográfico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...