Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Viruses ; 16(4)2024 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-38675912

RESUMO

In this paper, we report the characterization of a genetically modified live-attenuated African swine fever virus (ASFV) field strain isolated from Vietnam. The isolate, ASFV-GUS-Vietnam, belongs to p72 genotype II, has six multi-gene family (MGF) genes deleted, and an Escherichia coli GusA gene (GUS) inserted. When six 6-8-week-old pigs were inoculated with ASFV-GUS-Vietnam oro-nasally (2 × 105 TCID50/pig), they developed viremia, mild fever, lethargy, and inappetence, and shed the virus in their oral and nasal secretions and feces. One of the pigs developed severe clinical signs and was euthanized 12 days post-infection, while the remaining five pigs recovered. When ASFV-GUS-Vietnam was inoculated intramuscularly (2 × 103 TCID50/pig) into four 6-8 weeks old pigs, they also developed viremia, mild fever, lethargy, inappetence, and shed the virus in their oral and nasal secretions and feces. Two contact pigs housed together with the four intramuscularly inoculated pigs, started to develop fever, viremia, loss of appetite, and lethargy 12 days post-contact, confirming horizontal transmission of ASFV-GUS-Vietnam. One of the contact pigs died of ASF on day 23 post-contact, while the other one recovered. The pigs that survived the exposure to ASFV-GUS-Vietnam via the mucosal or parenteral route were fully protected against the highly virulent ASFV Georgia 2007/1 challenge. This study showed that ASFV-GUS-Vietnam field isolate is able to induce complete protection in the majority of the pigs against highly virulent homologous ASFV challenge, but has the potential for horizontal transmission, and can be fatal in some animals. This study highlights the need for proper monitoring and surveillance when ASFV live-attenuated virus-based vaccines are used in the field for ASF control in endemic countries.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Animais , Vírus da Febre Suína Africana/genética , Vírus da Febre Suína Africana/isolamento & purificação , Vírus da Febre Suína Africana/patogenicidade , Vírus da Febre Suína Africana/classificação , Febre Suína Africana/virologia , Suínos , Vietnã , Viremia , Genoma Viral , Genótipo , Deleção de Sequência , Eliminação de Partículas Virais , Filogenia
2.
Emerg Microbes Infect ; 13(1): 2302103, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38189080

RESUMO

Crimean-Congo haemorrhagic fever orthonairovirus (CCHFV) is a tick-borne, risk group 4 pathogen that often causes a severe haemorrhagic disease in humans (CCHF) with high case fatality rates. The virus is believed to be maintained in a tick-vertebrate-tick ecological cycle involving numerous wild and domestic animal species; however the biology of CCHFV infection in these animals remains poorly understood. Here, we experimentally infect domestic sheep with CCHFV Kosovo Hoti, a clinical isolate representing high pathogenicity to humans and increasingly utilized in current research. In the absence of prominent clinical signs, the infection leads to an acute viremia and coinciding viral shedding, fever and markers for potential impairment in liver and kidney functions. A number of host responses distinguish the subclinical infection in sheep versus fatal infection in humans. These include an early reduction of neutrophil recruitment and its chemoattractant, IL-8, in the blood stream of infected sheep, whereas neutrophil infiltration and elevated IL-8 are features of fatal CCHFV infections reported in immunodeficient mice and humans. Several inflammatory cytokines that correlate with poor disease outcomes in humans and have potential to cause vascular dysfunction, a primary hallmark of severe CCHF, are down-regulated or restricted from increasing in sheep. Of particular interest, the detection of CCHFV RNA (including full-length genome) in a variety of sheep tissues long after the acute phase of infection indicates a widespread viral dissemination in the host and suggests a potentially long-term persisting impact of CCHFV infection. These findings reveal previously unrecognized aspects of CCHFV biology in animals.


Assuntos
Vírus da Febre Hemorrágica da Crimeia-Congo , Febre Hemorrágica da Crimeia , Carrapatos , Humanos , Animais , Camundongos , Ovinos , Febre Hemorrágica da Crimeia/diagnóstico , Carneiro Doméstico/genética , RNA Viral/genética , Kosovo , Interleucina-8
3.
Viruses ; 15(12)2023 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-38140549

RESUMO

Classical swine fever (CSF) is a highly contagious transboundary viral disease of domestic and wild pigs. Despite mass vaccination and continuous eradication programs, CSF remains endemic in Asia, some countries in Europe, the Caribbean and South America. Since June 2013, Northern Colombia has reported 137 CSF outbreaks, mostly in backyard production systems with low vaccination coverage. The purpose of this study was to characterize the virus responsible for the outbreak. Phylogenetic analysis based on the full-length E2 sequence shows that the virus is closely related to CSF virus (CSFV) genotype 2.6 strains circulating in Southeast Asia. The pathotyping experiment suggests that the virus responsible is a moderately virulent strain. The 190 nucleotide stretch of the E2 hypervariable region of these isolates also shows high similarity to the CSFV isolates from Colombia in 2005 and 2006, suggesting a common origin for the CSF outbreaks caused by genotype 2.6 strains. The emergence of genotype 2.6 in Colombia suggests a potential transboundary spread of CSFV from Asia to the Americas, complicating the ongoing CSF eradication efforts in the Americas, and emphasizes the need for continuous surveillance in the region.


Assuntos
Vírus da Febre Suína Clássica , Peste Suína Clássica , Vacinas Virais , Suínos , Animais , Colômbia/epidemiologia , Filogenia , Sus scrofa , Surtos de Doenças , Genótipo
4.
Viruses ; 15(4)2023 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-37112895

RESUMO

African swine fever (ASF) is a high-consequence transboundary hemorrhagic fever of swine. It continues to spread across the globe causing socio-economic issues and threatening food security and biodiversity. In 2020, Nigeria reported a major ASF outbreak, killing close to half a million pigs. Based on the partial sequences of the genes B646L (p72) and E183L (p54), the virus responsible for the outbreak was identified as an African swine fever virus (ASFV) p72 genotype II. Here, we report further characterization of ASFV RV502, one of the isolates obtained during the outbreak. The whole genome sequence of this virus revealed a deletion of 6535 bp between the nucleotide positions 11,760-18,295 of the genome, and an apparent reverse complement duplication of the 5' end of the genome at the 3' end. Phylogenetically, ASFV RV502 clustered together with ASFV MAL/19/Karonga and ASFV Tanzania/Rukwa/2017/1 suggesting that the virus responsible for the 2020 outbreak in Nigeria has a South-eastern African origin.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Febre Suína Africana/epidemiologia , Sus scrofa , Nigéria/epidemiologia , Análise de Sequência de DNA , Filogenia , Genótipo , Surtos de Doenças
5.
Sci Rep ; 10(1): 6309, 2020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286409

RESUMO

The first Canadian H3N2 canine influenza A outbreak involving an Asian-origin H3N2 canine influenza virus (CIV) began in southwestern Ontario, Canada, in late December 2017. More H3N2 CIV cases were identified in central and eastern Ontario between March and October 2018. Based on epidemiological investigation, 5 clusters were identified (C1, C2, C3a, C3b, and C4); however, the origin of infection has only been revealed for epidemiological cluster C1. Here, we use phylogenetic analyses to unravel the links of virus transmission between the 5 epidemiological clusters and the origin of infection for all epidemiological clusters. Our results demonstrate that the Canadian H3N2 CIV sequences were grouped into four distinct phylogenetic clusters with minimal genetic diversity between these clusters. Large scale phylogenetic analysis of H3N2 CIV from around the globe showed that the Canadian CIVs formed a distinct new clade along with CIVs that have been circulating in the USA since 2017-2018 and in China since 2017. This clade shares a common ancestor of Asian origin. This study concludes that the H3N2 CIV outbreak in Ontario was driven by multiple introductions of South Korean/Chinese-origin H3N2 CIVs over 10 months.


Assuntos
Doenças Transmissíveis Importadas/veterinária , Surtos de Doenças/veterinária , Doenças do Cão/epidemiologia , Vírus da Influenza A Subtipo H3N2/genética , Infecções por Orthomyxoviridae/veterinária , Animais , China , Doenças Transmissíveis Importadas/epidemiologia , Doenças Transmissíveis Importadas/virologia , Doenças do Cão/transmissão , Doenças do Cão/virologia , Cães , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Epidemiologia Molecular , Ontário/epidemiologia , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/transmissão , Infecções por Orthomyxoviridae/virologia , Filogenia , República da Coreia
6.
J Virol ; 89(21): 10724-34, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26246579

RESUMO

UNLABELLED: Although a polybasic HA0 cleavage site is considered the dominant virulence determinant for highly pathogenic avian influenza (HPAI) H5 and H7 viruses, naturally occurring virus isolates possessing a polybasic HA0 cleavage site have been identified that are low pathogenic in chickens. In this study, we generated a reassortant H5N3 virus that possessed the hemagglutinin (HA) gene from H5N1 HPAI A/swan/Germany/R65/2006 and the remaining gene segments from low pathogenic A/chicken/British Columbia/CN0006/2004 (H7N3). Despite possessing the HA0 cleavage site GERRRKKR/GLF, this rH5N3 virus exhibited a low pathogenic phenotype in chickens. Although rH5N3-inoculated birds replicated and shed virus and seroconverted, transmission to naive contacts did not occur. To determine whether this virus could evolve into a HPAI form, it underwent six serial passages in chickens. A progressive increase in virulence was observed with the virus from passage number six being highly transmissible. Whole-genome sequencing demonstrated the fixation of 12 nonsynonymous mutations involving all eight gene segments during passaging. One of these involved the catalytic site of the neuraminidase (NA; R293K) and is associated with decreased neuraminidase activity and resistance to oseltamivir. Although introducing the R293K mutation into the original low-pathogenicity rH5N3 increased its virulence, transmission to naive contact birds was inefficient, suggesting that one or more of the remaining changes that had accumulated in the passage number six virus also play an important role in transmissibility. Our findings show that the functional linkage and balance between HA and NA proteins contributes to expression of the HPAI phenotype. IMPORTANCE: To date, the contribution that hemagglutinin-neuraminidase balance can have on the expression of a highly pathogenic avian influenza virus phenotype has not been thoroughly examined. Reassortment, which can result in new hemagglutinin-neuraminidase combinations, may have unpredictable effects on virulence and transmission characteristics of a virus. Our data show the importance of the neuraminidase in complementing a polybasic HA0 cleavage site. Furthermore, it demonstrates that adaptive changes selected for during the course of virus evolution can result in unexpected traits such as antiviral drug resistance.


Assuntos
Galinhas , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Vírus da Influenza A/metabolismo , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Neuraminidase/metabolismo , Vírus Reordenados/genética , Animais , Sequência de Bases , Cães , Genoma Viral/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Virus da Influenza A Subtipo H5N1/genética , Vírus da Influenza A Subtipo H7N3/genética , Células Madin Darby de Rim Canino , Dados de Sequência Molecular , Mutação/genética , Neuraminidase/genética , Oseltamivir , Análise de Sequência de DNA , Ensaio de Placa Viral , Virulência
7.
Sci Rep ; 5: 9484, 2015 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-25804829

RESUMO

In late November 2014 higher than normal death losses in a meat turkey and chicken broiler breeder farm in the Fraser Valley of British Columbia initiated a diagnostic investigation that led to the discovery of a novel reassortant highly pathogenic avian influenza (HPAI) H5N2 virus. This virus, composed of 5 gene segments (PB2, PA, HA, M and NS) related to Eurasian HPAI H5N8 and the remaining gene segments (PB1, NP and NA) related to North American lineage waterfowl viruses, represents the first HPAI outbreak in North American poultry due to a virus with Eurasian lineage genes. Since its first appearance in Korea in January 2014, HPAI H5N8 spread to Western Europe in November 2014. These European outbreaks happened to temporally coincide with migratory waterfowl movements. The fact that the British Columbia outbreaks also occurred at a time associated with increased migratory waterfowl activity along with reports by the USA of a wholly Eurasian H5N8 virus detected in wild birds in Washington State, strongly suggest that migratory waterfowl were responsible for bringing Eurasian H5N8 to North America where it subsequently reassorted with indigenous viruses.


Assuntos
Vírus da Influenza A Subtipo H5N2/patogenicidade , Influenza Aviária/genética , Influenza Humana/epidemiologia , Filogenia , Animais , Colúmbia Britânica , Galinhas/virologia , Surtos de Doenças , Humanos , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Influenza Aviária/virologia , Influenza Humana/genética , Influenza Humana/virologia , Aves Domésticas/virologia , Doenças das Aves Domésticas/virologia
8.
PLoS One ; 7(3): e32858, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22470427

RESUMO

Triple reassortant (TR) H3N2 influenza viruses cause varying degrees of loss in egg production in breeder turkeys. In this study we characterized TR H3N2 viruses isolated from three breeder turkey farms diagnosed with a drop in egg production. The eight gene segments of the virus isolated from the first case submission (FAV-003) were all of TR H3N2 lineage. However, viruses from the two subsequent case submissions (FAV-009 and FAV-010) were unique reassortants with PB2, PA, nucleoprotein (NP) and matrix (M) gene segments from 2009 pandemic H1N1 and the remaining gene segments from TR H3N2. Phylogenetic analysis of the HA and NA genes placed the 3 virus isolates in 2 separate clades within cluster IV of TR H3N2 viruses. Birds from the latter two affected farms had been vaccinated with a H3N4 oil emulsion vaccine prior to the outbreak. The HAl subunit of the H3N4 vaccine strain had only a predicted amino acid identity of 79% with the isolate from FAV-003 and 80% for the isolates from FAV-009 and FAV-0010. By comparison, the predicted amino acid sequence identity between a prototype TR H3N2 cluster IV virus A/Sw/ON/33853/2005 and the three turkey isolates from this study was 95% while the identity between FAV-003 and FAV-009/10 isolates was 91%. When the previously identified antigenic sites A, B, C, D and E of HA1 were examined, isolates from FAV-003 and FAV-009/10 had a total of 19 and 16 amino acid substitutions respectively when compared with the H3N4 vaccine strain. These changes corresponded with the failure of the sera collected from turkeys that received this vaccine to neutralize any of the above three isolates in vitro.


Assuntos
Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Influenza Aviária/virologia , Doenças das Aves Domésticas/virologia , Sequência de Aminoácidos , Animais , Anticorpos/imunologia , Análise por Conglomerados , Genótipo , Hemaglutininas/química , Hemaglutininas/imunologia , Hemaglutininas/metabolismo , Vírus da Influenza A Subtipo H3N2/classificação , Vírus da Influenza A Subtipo H3N2/isolamento & purificação , Vacinas contra Influenza/imunologia , Influenza Aviária/epidemiologia , Influenza Aviária/genética , Dados de Sequência Molecular , Pandemias , Filogenia , Doenças das Aves Domésticas/epidemiologia , Estrutura Terciária de Proteína , Alinhamento de Sequência , Perus
9.
J Virol ; 85(17): 8667-79, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21697484

RESUMO

The 2009 pandemic H1N1 (pH1N1), of apparent swine origin, may have evolved in pigs unnoticed because of insufficient surveillance. Consequently, the need for surveillance of influenza viruses circulating in pigs has received added attention. In this study we characterized H1N1 viruses isolated from Canadian pigs in 2009. Isolates from May 2009 were comprised of hemagglutinin and neuraminidase (NA) genes of classical SIV origin in combination with the North American triple-reassortant internal gene (TRIG) cassette, here termed contemporary SIV (conSIV) H1N1. These conSIV H1N1 viruses were contiguous with the North American αH1 cluster, which was distinct from the pH1N1 isolates that were antigenically more related to the γH1 cluster. After the initial isolation of pH1N1 from an Alberta pig farm in early May 2009, pH1N1 was found several times in Canadian pigs. These pH1N1 isolates were genetically and antigenically homogeneous. In addition, H1N1 viruses bearing seasonal human H1 and N1 genes together with the TRIG cassette and an NA encoding an oseltamivir-resistance marker were isolated from pigs. The NS gene of one of these seasonal human-like SIV (shSIV) H1N1 isolates was homologous to pH1N1 NS, implicating reassortment between the two strains. Antigenic cross-reactivity was observed between pH1N1 and conSIV but not with shSIV H1N1. In summary, although there was cocirculation of pH1N1 with conSIV and shSIV H1N1 in Canadian pigs after May 2009, there was no evidence supporting the presence of pH1N1 in pigs prior to May 2009. The possibility for further reassortants being generated exists and should be closely monitored.


Assuntos
Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Neuraminidase/genética , Infecções por Paramyxoviridae/veterinária , Doenças dos Suínos/virologia , Proteínas Virais/genética , Animais , Antígenos Virais/imunologia , Canadá , Análise por Conglomerados , Reações Cruzadas , Genótipo , Humanos , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Dados de Sequência Molecular , Infecções por Paramyxoviridae/virologia , Filogenia , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Suínos
10.
Avian Dis ; 54(4): 1275-85, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21313850

RESUMO

Suspected human-to-animal transmission of the 2009 pandemic H1N1 (pH1N1) virus has been reported in several animal species, including pigs, dogs, cats, ferrets, and turkeys. In this study we describe the genetic characterization of pH1N1 viruses isolated from breeder turkeys that was associated with a progressive drop in egg production. Sequence analysis of all eight gene segments from three viruses isolated from this outbreak demonstrated homology with other human and swine pH1N1 isolates. The susceptibility of turkeys to a human pH1N1 isolate was further evaluated experimentally. The 50% turkey infectious dose (TID50) for the human isolate A/Mexico/LnDRE/4487/2009 was determined by inoculating groups of 8-10-week-old turkeys with serial 10-fold dilutions of virus by oronasal and cloacal routes. We estimated the TID50 to be between 1 x 10(5) and 1 x 10(6) TCID50. The pathogenesis of pH1N1 in oronasally or cloacally inoculated juvenile turkeys was also examined. None of the turkeys exhibited clinical signs, and no significant difference in virus shedding or seroconversion was observed between the two inoculation groups. More than 50% of the turkeys in both oronasal and cloacal groups shed virus beginning at 2 days postinoculation (dpi). All birds that actively shed virus seroconverted by 14 dpi. Virus antigen was demonstrated by immunohistochemistry in the cecal tonsils and bursa of Fabricius in two of the birds that were infected by the cloacal route. Virus transmission to naive contact turkeys was at best doubtful. This report provides additional evidence that pH1N1 can cross the species barrier and cause disease outbreaks in domestic turkeys. However, it appears that the reproductive status of the host as well as environmental factors such as concurrent infections, stress, the presence or absence of litter, and stocking density may also contribute to efficient infection and transmission of this agent.


Assuntos
Vírus da Influenza A Subtipo H1N1/isolamento & purificação , Vírus da Influenza A Subtipo H1N1/patogenicidade , Influenza Aviária/virologia , Perus , Animais , Ensaio de Imunoadsorção Enzimática/veterinária , Humanos , Vírus da Influenza A Subtipo H1N1/classificação , Vírus da Influenza A Subtipo H1N1/genética , Filogenia
11.
12.
J Virol ; 81(21): 11612-9, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17728231

RESUMO

Wild-bird surveillance in North America for avian influenza (AI) viruses with a goal of early identification of the Asian H5N1 highly pathogenic AI virus has identified at least six low-pathogenicity H5N1 AI viruses between 2004 and 2006. The hemagglutinin (HA) and neuraminidase (NA) genes from all 6 H5N1 viruses and an additional 38 North American wild-bird-origin H5 subtype and 28 N1 subtype viruses were sequenced and compared with sequences available in GenBank by phylogenetic analysis. Both HA and NA were phylogenetically distinct from those for viruses from outside of North America and from those for viruses recovered from mammals. Four of the H5N1 AI viruses were characterized as low pathogenicity by standard in vivo pathotyping tests. One of the H5N1 viruses, A/MuteSwan/MI/451072-2/06, was shown to replicate to low titers in chickens, turkeys, and ducks. However, transmission of A/MuteSwan/MI/451072-2/06 was more efficient among ducks than among chickens or turkeys based on virus shed. The 50% chicken infectious dose for A/MuteSwan/MI/451072-2/06 and three other wild-waterfowl-origin H5 viruses were also determined and were between 10(5.3) and 10(7.5) 50% egg infective doses. Finally, seven H5 viruses representing different phylogenetic clades were evaluated for their antigenic relatedness by hemagglutination inhibition assay, showing that the antigenic relatedness was largely associated with geographic origin. Overall, the data support the conclusion that North American H5 wild-bird-origin AI viruses are low-pathogenicity wild-bird-adapted viruses and are antigenically and genetically distinct from the highly pathogenic Asian H5N1 virus lineage.


Assuntos
Virus da Influenza A Subtipo H5N1/química , Virus da Influenza A Subtipo H5N1/genética , Influenza Aviária/virologia , Animais , Antígenos/química , Aves , Galinhas , Patos , Genes Virais , Genoma Viral , Virus da Influenza A Subtipo H5N1/patogenicidade , Concentração Inibidora 50 , América do Norte , Filogenia , Análise de Sequência de DNA , Fatores de Tempo , Perus
13.
Avian Dis ; 51(1 Suppl): 309-12, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17494572

RESUMO

In February 2004 a highly pathogenic avian influenza outbreak erupted in the Fraser Valley of British Columbia, Canada. The index farm was a chicken broiler breeder operation comprising two flocks, 24 and 52 wk of age. Birds in the older flock presented with a mild drop in egg production and a small increase in mortality. Pathological specimens taken from the older flock were submitted to the provincial veterinary diagnostic laboratory from which an influenza A virus was isolated. While still under investigation by the provincial veterinary authorities, a spike in mortality was observed in birds belonging to the younger flock. Diagnostic material from both flocks was forwarded to the Canadian Food Inspection Agency's National Centre for Foreign Animal Disease. A low-pathogenicity H7N3 virus was detected in the older flock and a novel highly pathogenic H7N3 virus was found in specimens collected from the younger flock. Despite destruction and disposal of birds on the index farm, the virus spread to adjacent farms. Given the high density of poultry operations in the Fraser Valley and the high level of integration amongst industry support services, a total of approximately 17 million chickens, turkeys, ducks, geese, and speciality birds were put at immediate risk. Despite movement controls the virus spread and established itself in three distinct clusters. To prevent further spread, healthy, marketable birds outside of the surveillance areas were pre-emptively slaughtered. Although highly pathogenic avian influenza is a federal responsibility, the successful control and eradication of this outbreak would not have been possible without the cooperative involvement of federal and provincial diagnostic laboratories. The success of this collaboration was partly responsible for the formation of a national avian influenza laboratory network.


Assuntos
Surtos de Doenças/veterinária , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Laboratórios/organização & administração , Animais , Aves/virologia , Colúmbia Britânica/epidemiologia , Surtos de Doenças/prevenção & controle
14.
Avian Dis ; 51(1 Suppl): 429-31, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17494600

RESUMO

In the summer of 2005 a Canadian national surveillance program for influenza A viruses in wild aquatic birds was initiated. The program involved collaboration between federal and provincial levels of government and was coordinated by the Canadian Cooperative Wildlife Health Centre. The surveillance plan targeted young-of-the-year Mallards along with other duck species at six sampling locations along the major migratory flyways across Canada. Beginning in early August, cloacal swabs were taken from 704 ducks on two lakes adjacent to one another near Kamloops, British Columbia. The swabs were screened for the presence of influenza A RNA using a real-time reverse transcription-polymerase chain reaction (RRT-PCR) assay that targets the M1 gene. Swab samples that gave positive results underwent further testing using H5- and H7-specific RRT-PCR assays. One hundred and seventy-four cloacal swab specimens gave positive or suspicious results for the presence of an H5 virus. A portion of these (28/35) were confirmed using an H5-specific conventional reverse transcription-polymerase chain reaction assay and an H5 virus was eventually isolated from 24/127 swab specimens. Neuraminidase typing revealed the presence of H5N2 and H5N9 viruses. In mid-November of 2005 an H5N2 virus was detected in a commercial duck operation in the lower mainland of British Columbia, approximately 120 km from where the H5N2-positive wild ducks were sampled. Molecular genetic analysis of the H5N2 viruses isolated from wild and domestic ducks was carried out to determine their kinship.


Assuntos
Patos/virologia , Vírus da Influenza A Subtipo H5N2/isolamento & purificação , Influenza Aviária/epidemiologia , Influenza Aviária/virologia , Animais , Animais Selvagens , Colúmbia Britânica/epidemiologia , Surtos de Doenças/veterinária , Vírus da Influenza A Subtipo H5N2/genética , Prevalência
15.
Emerg Infect Dis ; 13(12): 1821-7, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18258030

RESUMO

Migratory birds have been implicated in the long-range spread of highly pathogenic avian influenza (HPAI) A virus (H5N1) from Asia to Europe and Africa. Although sampling of healthy wild birds representing a large number of species has not identified possible carriers of influenza virus (H5N1) into Europe, surveillance of dead and sick birds has demonstrated mute (Cygnus olor) and whooper (C. cygnus) swans as potential sentinels. Because of concerns that migratory birds could spread H5N1 subtype to the Western Hemisphere and lead to its establishment within free-living avian populations, experimental studies have addressed the susceptibility of several indigenous North American duck and gull species. We examined the susceptibility of Canada geese (Branta canadensis) to HPAI virus (H5N1). Large populations of this species can be found in periagricultural and periurban settings and thus may be of potential epidemiologic importance if H5N1 subtype were to establish itself in North American wild bird populations.


Assuntos
Suscetibilidade a Doenças/veterinária , Gansos/virologia , Virus da Influenza A Subtipo H5N1/patogenicidade , Influenza Aviária/virologia , Migração Animal , Animais , Cerebelo/patologia , Cerebelo/virologia , Cérebro/patologia , Cérebro/virologia , América do Norte , Virulência
16.
Can Vet J ; 47(4): 366-9, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16642877

RESUMO

A high mortality outbreak of respiratory mycoplasmosis occurred in goats in Mexico. The clinicopathologic presentation resembled contagious caprine pleuropneumonia caused by Mycoplasma capricolum subspecies capripneumoniae. By using a battery of polymerase chain reaction assays, the mycoplasma associated with this outbreak was identified as Mycoplasma mycoides subsp. capri.


Assuntos
Surtos de Doenças/veterinária , Doenças das Cabras/epidemiologia , Mycoplasma mycoides , Pleuropneumonia Contagiosa/epidemiologia , Fatores Etários , Animais , Feminino , Doenças das Cabras/mortalidade , Cabras , Mycoplasma mycoides/classificação , Mycoplasma mycoides/isolamento & purificação , Pleuropneumonia Contagiosa/mortalidade , Reação em Cadeia da Polimerase/veterinária
17.
J Gen Virol ; 86(Pt 3): 727-731, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15722533

RESUMO

In February 2004 a highly pathogenic avian influenza (HPAI) outbreak erupted in British Columbia. Investigations indicated that the responsible HPAI H7N3 virus emerged suddenly from a low pathogenic precursor. Analysis of the haemagglutinin (HA) genes of the low and high pathogenic viruses isolated from the index farm revealed the only difference to be a 21 nt insert at the HA cleavage site of the highly pathogenic avian influenza virus. It was deduced that this insert most probably arose as a result of non-homologous recombination between the HA and matrix genes of the same virus. Over the course of the outbreak, a total of 37 isolates with, and 3 isolates without inserts were characterized. The events described here appear very similar to those which occurred in Chile in 2002 where the virulence shift of another H7N3 virus was attributed to non-homologous recombination between the HA and nucleoprotein genes.


Assuntos
Surtos de Doenças/veterinária , Hemaglutininas Virais/genética , Vírus da Influenza A/genética , Influenza Aviária/epidemiologia , Recombinação Genética , Proteínas da Matriz Viral/genética , Animais , Aves , Colúmbia Britânica , Hemaglutininas Virais/química , Hemaglutininas Virais/imunologia , Vírus da Influenza A/patogenicidade , Influenza Aviária/virologia , Filogenia , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/imunologia , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...