Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38676734

RESUMO

PURPOSE: Functional PET (fPET) is a novel technique for studying dynamic changes in brain metabolism and neurotransmitter signaling. Accurate quantification of fPET relies on measuring the arterial input function (AIF), traditionally achieved through invasive arterial blood sampling. While non-invasive image-derived input functions (IDIF) offer an alternative, they suffer from limited spatial resolution and field of view. To overcome these issues, we developed and validated a scan protocol for brain fPET utilizing cardiac IDIF, aiming to mitigate known IDIF limitations. METHODS: Twenty healthy individuals underwent fPET/MR scans using [18F]FDG or 6-[18F]FDOPA, utilizing bed motion shuttling to capture cardiac IDIF and brain task-induced changes. Arterial and venous blood sampling was used to validate IDIFs. Participants performed a monetary incentive delay task. IDIFs from various blood pools and composites estimated from a linear fit over all IDIF blood pools (3VOI) and further supplemented with venous blood samples (3VOIVB) were compared to the AIF. Quantitative task-specific images from both tracers were compared to assess the performance of each input function to the gold standard. RESULTS: For both radiotracer cohorts, moderate to high agreement (r: 0.60-0.89) between IDIFs and AIF for both radiotracer cohorts was observed, with further improvement (r: 0.87-0.93) for composite IDIFs (3VOI and 3VOIVB). Both methods showed equivalent quantitative values and high agreement (r: 0.975-0.998) with AIF-derived measurements. CONCLUSION: Our proposed protocol enables accurate non-invasive estimation of the input function with full quantification of task-specific changes, addressing the limitations of IDIF for brain imaging by sampling larger blood pools over the thorax. These advancements increase applicability to any PET scanner and clinical research setting by reducing experimental complexity and increasing patient comfort.

2.
Arch Sex Behav ; 53(5): 1859-1871, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38216784

RESUMO

Self-reported sexual orientation of transgender individuals occasionally changes over transition. Using functional magnetic resonance imaging, we tested the hypothesis that neural and behavioral patterns of sexual arousal in transgender individuals would shift from the assigned to the experienced gender (e.g., trans women's responses becoming more dissimilar to those of cis men and more similar to those of cis women). To this aim, trans women (N = 12) and trans men (N = 20) as well as cisgender women (N = 24) and cisgender men (N = 14) rated visual stimuli showing male-female, female-female or male-male intercourse for sexual arousal before and after four months of gender-affirming hormone therapy. A Bayesian framework allowed us to incorporate previous behavioral findings. The hypothesized changes could indeed be observed in the behavioral responses with the strongest results for trans men and female-female scenes. Activation of the ventral striatum supported our hypothesis only for female-female scenes in trans women. The respective application or depletion of androgens in trans men and trans women might partly explain this observation. The prominent role of female-female stimuli might be based on the differential responses they elicit in cis women and men or, in theory, the controversial concept of autogynephilia. We show that correlates of sexual arousal in transgender individuals might change in the direction of the experienced gender. Future investigations should elucidate the mechanistic role of sex hormones and the cause of the differential neural and behavioral findings.The study was registered at ClinicalTrials.gov (NCT02715232), March 22, 2016.


Assuntos
Teorema de Bayes , Disforia de Gênero , Imageamento por Ressonância Magnética , Excitação Sexual , Pessoas Transgênero , Humanos , Masculino , Feminino , Adulto , Disforia de Gênero/psicologia , Disforia de Gênero/tratamento farmacológico , Pessoas Transgênero/psicologia , Comportamento Sexual/efeitos dos fármacos , Comportamento Sexual/psicologia , Adulto Jovem , Estriado Ventral/efeitos dos fármacos , Estriado Ventral/diagnóstico por imagem
3.
J Psychiatry Neurosci ; 48(5): E369-E375, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37751919

RESUMO

BACKGROUND: Among its pleiotropic properties, gender-affirming hormone therapy (GHT) affects regional brain volumes. The hypothalamus, which regulates neuroendocrine function and associated emotional and cognitive processes, is an intuitive target for probing GHT effects. We sought to assess changes to hypothalamus and hypothalamic subunit volumes after GHT, thereby honouring the region's anatomical and functional heterogeneity. METHODS: Individuals with gender dysphoria and cisgender controls underwent 2 MRI measurements, with a median interval of 145 days (interquartile range [IQR] 128.25-169.75 d, mean 164.94 d) between the first and second MRI. Transgender women (TW) and transgender men (TM) underwent the first MRI before GHT and the second MRI after approximately 4.5 months of GHT, which comprised estrogen and anti-androgen therapy in TW or testosterone therapy in TM. Hypothalamic volumes were segmented using FreeSurfer, and effects of GHT were tested using repeated-measures analysis of covariance. RESULTS: The final sample included 106 participants: 38 TM, 15 TW, 32 cisgender women (CW) and 21 cisgender men (CM). Our analyses revealed group × time interaction effects for total, left and right hypothalamus volume, and for several subunits (left and right inferior tubular, left superior tubular, right anterior inferior, right anterior superior, all p corr < 0.01). In TW, volumes decreased between the first and second MRI in these regions (all p corr ≤ 0.01), and the change from the first to second MRI in TW differed significantly from that in CM and CW in several subunits (p corr < 0.05). LIMITATIONS: We did not address the influence of transition-related psychological and behavioural changes. CONCLUSION: Our results suggest a subunit-specific effect of GHT on hypothalamus volumes in TW. This finding is in accordance with previous reports of positive and negative effects of androgens and estrogens, respectively, on cerebral volumes.


Assuntos
Emoções , Disforia de Gênero , Masculino , Feminino , Humanos , Disforia de Gênero/diagnóstico por imagem , Disforia de Gênero/tratamento farmacológico , Hipotálamo/diagnóstico por imagem , Testosterona
4.
Psychoneuroendocrinology ; 155: 106336, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37499299

RESUMO

BACKGROUND: Sex-specific differences in brain connectivity were found in various neuroimaging studies, though little is known about sex steroid effects on insular functioning. Based on well-characterized sex differences in emotion regulation, interoception and higher-level cognition, gender-dysphoric individuals receiving gender-affirming hormone therapy represent an interesting cohort to investigate how sex hormones might influence insular connectivity and related brain functions. METHODS: To analyze the potential effect of sex steroids on insular connectivity at rest, 11 transgender women, 14 transgender men, 20 cisgender women, and 11 cisgender men were recruited. All participants underwent two magnetic resonance imaging sessions involving resting-state acquisitions separated by a median time period of 4.5 months and also completed the Bermond-Vorst alexithymia questionnaire at the initial and final examination. Between scans, transgender subjects received gender-affirming hormone therapy. RESULTS: A seed based functional connectivity analysis revealed a significant 2-way interaction effect of group-by-time between right insula, cingulum, left middle frontal gyrus and left angular gyrus. Post-hoc tests demonstrated an increase in connectivity for transgender women when compared to cisgender men. Furthermore, spectral dynamic causal modelling showed reduced effective connectivity from the posterior cingulum and left angular gyrus to the left middle frontal gyrus as well as from the right insula to the left middle frontal gyrus. Alexithymia changes were found after gender-affirming hormone therapy for transgender women in both fantasizing and identifying. CONCLUSION: These findings suggest a considerable influence of estrogen administration and androgen suppression on brain networks implicated in interoception, own-body perception and higher-level cognition.


Assuntos
Disforia de Gênero , Transexualidade , Humanos , Masculino , Feminino , Disforia de Gênero/tratamento farmacológico , Identidade de Gênero , Transexualidade/tratamento farmacológico , Encéfalo , Imageamento por Ressonância Magnética/métodos , Hormônios Esteroides Gonadais/farmacologia , Esteroides
5.
Int J Neuropsychopharmacol ; 26(2): 116-124, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36573644

RESUMO

BACKGROUND: Epigenetic modifications like DNA methylation are understood as an intermediary between environmental factors and neurobiology. Cerebral monoamine oxidase A (MAO-A) levels are altered in depression, as are DNA methylation levels within the MAOA gene, particularly in the promoter/exon I/intron I region. An effect of MAOA methylation on peripheral protein expression was shown, but the extent to which methylation affects brain MAO-A levels is not fully understood. METHODS: Here, the influence of MAOA promoter/exon I/intron I region DNA methylation on global MAO-A distribution volume (VT), an index of MAO-A density, was assessed via [11C]harmine positron emission tomography in 22 patients (14 females) suffering from seasonal affective disorder and 30 healthy controls (17 females). RESULTS: No significant influence of MAOA DNA methylation on global MAO-A VT was found, despite correction for health status, sex, season, and MAOA variable number of tandem repeat genotype. However, season affected average methylation in women, with higher levels in spring and summer (Puncorr = .03). We thus did not find evidence for an effect of MAOA DNA methylation on brain MAO-A VT. CONCLUSIONS: In contrast to a previous study demonstrating an effect of methylation of a MAOA promoter region located further 5' on brain MAO-A, MAOA methylation of the region assessed here appears to affect brain protein levels to a limited extent at most. The observed effect of season on methylation levels is in accordance with extensive evidence for seasonal effects within the serotonergic system. CLINICALTRIALS.GOV IDENTIFIER: NCT02582398 (https://clinicaltrials.gov/ct2/show/NCT02582398).


Assuntos
Metilação de DNA , Harmina , Humanos , Feminino , Monoaminoxidase/genética , Monoaminoxidase/metabolismo , Radioisótopos de Carbono , Tomografia por Emissão de Pósitrons/métodos
6.
Ther Adv Psychopharmacol ; 12: 20451253221132085, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36420117

RESUMO

Background: Serotonergic agents affect brain plasticity and reverse stress-induced dendritic atrophy in key fronto-limbic brain areas associated with learning and memory. Objectives: The aim of this study was to investigate effects of the antidepressant escitalopram on gray matter during relearning in healthy individuals to inform a model for depression and the neurobiological processes of recovery. Design: Randomized double blind placebo control, monocenter study. Methods: In all, 76 (44 females) healthy individuals performed daily an associative learning task with emotional or non-emotional content over a 3-week period. This was followed by a 3-week relearning period (randomly shuffled association within the content group) with concurrent daily selective serotonin reuptake inhibitor (i.e., 10 mg escitalopram) or placebo intake. Results: Via voxel-based morphometry and only in individuals that developed sufficient escitalopram blood levels over the 21-day relearing period, an increased density of the left dorsolateral prefrontal cortex was found. When investigating whether there was an interaction between relearning and drug intervention for all participants, regardless of escitalopram levels, no changes in gray matter were detected with either surfaced-based or voxel-based morphometry analyses. Conclusion: The left dorsolateral prefrontal cortex affects executive function and emotional processing, and is a critical mediator of symptoms and treatment outcomes of depression. In line, the findings suggest that escitalopram facilitates neuroplastic processes in this region if blood levels are sufficient. Contrary to our hypothesis, an effect of escitalopram on brain structure that is dependent of relearning content was not detected. However, this may have been a consequence of the intensity and duration of the interventions. Registration: ClinicalTrials.gov Identifier: NCT02753738; Trial Name: Enhancement of learning associated neural plasticity by Selective Serotonin Reuptake Inhibitors; URL: https://clinicaltrials.gov/ct2/show/NCT02753738.

7.
EJNMMI Res ; 12(1): 53, 2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36018389

RESUMO

BACKGROUND: The NMDA receptor (NMDAR) plays a key role in the central nervous system, e.g., for synaptic transmission. While synaptic NMDARs are thought to have protective characteristics, activation of extrasynaptic NMDARs might trigger excitotoxic processes linked to neuropsychiatric disorders. Since extrasynaptic NMDARs are typically GluN2B-enriched, the subunit is an interesting target for drug development and treatment monitoring. Recently, the novel GluN2B-specific PET radioligand (R)-[11C]Me-NB1 was investigated in rodents and for the first time successfully translated to humans. To assess whether (R)-[11C]Me-NB1 is a valuable radioligand for (repeated) clinical applications, we evaluated its safety, biodistribution and dosimetry. METHODS: Four healthy subjects (two females, two males) underwent one whole-body PET/MR measurement lasting for more than 120 min. The GluN2B-specific radioligand (R)-[11C]Me-NB1 was administered simultaneously with the PET start. Subjects were measured in nine passes and six bed positions from head to mid-thigh. Regions of interest was anatomically defined for the brain, thyroid, lungs, heart wall, spleen, stomach contents, pancreas, liver, kidneys, bone marrow and urinary bladder contents, using both PET and MR images. Time-integrated activity coefficients were estimated to calculate organ equivalent dose coefficients and the effective dose coefficient. Additionally, standardized uptake values (SUV) were computed to visualize the biodistribution. RESULTS: Administration of the radioligand was safe without adverse events. The organs with the highest uptake were the urinary bladder, spleen and pancreas. Organ equivalent dose coefficients were higher in female in almost all organs, except for the urinary bladder of male. The effective dose coefficient was 6.0 µSv/MBq. CONCLUSION: The GluN2B-specific radioligand (R)-[11C]Me-NB1 was well-tolerated without reported side effects. Effective dose was estimated to 1.8 mSv when using 300 MBq of presented radioligand. The critical organ was the urinary bladder. Due to the low effective dose coefficient of this radioligand, longitudinal studies for drug development and treatment monitoring of neuropsychiatric disorders including neurodegenerative diseases are possible. Trial registration Registered on 11th of June 2019 at https://www.basg.gv.at (EudraCT: 2018-002933-39).

8.
Neuroimage ; 249: 118887, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34999203

RESUMO

An essential core function of one's cognitive flexibility is the use of acquired knowledge and skills to adapt to ongoing environmental changes. Animal models have highlighted the influence serotonin has on neuroplasticity. These effects have been predominantly demonstrated during emotional relearning which is theorized as a possible model for depression. However, translation of these mechanisms is in its infancy. To this end, we assessed changes in effective connectivity at rest and during associative learning as a proxy of neuroplastic changes in healthy volunteers. 76 participants underwent 6 weeks of emotional or non-emotional (re)learning (face-matching or Chinese character-German noun matching). During relearning participants either self-administered 10 mg/day of the selective serotonin reuptake inhibitor (SSRI) escitalopram or placebo in a double-blind design. Associative learning tasks, resting-state and structural images were recorded before and after both learning phases (day 1, 21 and 42). Escitalopram intake modulated relearning changes in a network encompassing the right insula, anterior cingulate cortex and right angular gyrus. Here, the process of relearning during SSRI intake showed a greater decrease in effective connectivity from the right insula to both the anterior cingulate cortex and right angular gyrus, with increases in the opposite direction when compared to placebo. In contrast, intrinsic connections and those at resting-state were only marginally affected by escitalopram. Further investigation of gray matter volume changes in these functionally active regions revealed no significant SSRI-induced structural changes. These findings indicate that the right insula plays a central role in the process of relearning and SSRIs further potentiate this effect. In sum, we demonstrated that SSRIs amplify learning-induced effective connections rather than affecting the intrinsic task connectivity or that of resting-state.


Assuntos
Aprendizagem por Associação , Conectoma , Córtex Insular , Rede Nervosa , Plasticidade Neuronal , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adulto , Aprendizagem por Associação/efeitos dos fármacos , Aprendizagem por Associação/fisiologia , Citalopram/farmacologia , Feminino , Giro do Cíngulo/diagnóstico por imagem , Giro do Cíngulo/efeitos dos fármacos , Giro do Cíngulo/fisiologia , Humanos , Córtex Insular/diagnóstico por imagem , Córtex Insular/efeitos dos fármacos , Córtex Insular/fisiologia , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/efeitos dos fármacos , Rede Nervosa/fisiologia , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Lobo Parietal/diagnóstico por imagem , Lobo Parietal/efeitos dos fármacos , Lobo Parietal/fisiologia , Descanso , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem , Adulto Jovem
9.
J Nucl Med ; 63(6): 936-941, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34620732

RESUMO

The N-methyl-d-aspartate receptor (NMDAR) plays a crucial role in neurodegenerative diseases such as Alzheimer disease and in the treatment of major depression by fast-acting antidepressants such as ketamine. Given their broad implications, GluN2B-containing NMDARs have been of interest as diagnostic and therapeutic targets. Recently, (R)-11C-Me-NB1 was investigated preclinically and shown to be a promising radioligand for imaging GluN2B subunits. Here, we report on the performance characteristics of this radioligand in a first-in-humans PET study. Methods: Six healthy male subjects were scanned twice on a fully integrated PET/MR scanner with (R)-11C-Me-NB1 for 120 min. Brain uptake and tracer distribution over time were investigated by SUVs. Test-retest reliability was assessed with the absolute percentage difference and the coefficient of variation. Exploratory total volumes of distribution (VT) were computed using an arterial input function and the Logan plot as well as a constrained 2-tissue-compartment model with the ratio of rate constants between plasma and tissue compartments (K1/k2) coupled (2TCM). SUV was correlated with VT to investigate its potential as a surrogate marker of GluN2B expression. Results: High and heterogeneous radioligand uptake was observed across the entire gray matter with reversible kinetics within the scan time. SUV absolute percentage difference ranged from 6.9% to 8.5% and coefficient of variation from 4.9% to 6.0%, indicating a high test-retest reliability. A moderate correlation was found between SUV averaged from 70 to 90 min and VT using Logan plot (Spearman ρ = 0.44). Correlation between VT Logan and 2TCM was r = 0.76. Conclusion: The radioligand (R)-11C-Me-NB1 was highly effective in mapping GluN2B-enriched NMDARs in the human brain. With a heterogeneous uptake and a high test-retest reliability, this radioligand offers promise to deepen our understanding of the GluN2B-containing NMDAR in the pathophysiology and treatment of neuropsychiatric disease such as Alzheimer disease and major depression. Additionally, it could help in the selection of appropriate doses of GluN2B-targeting drugs.


Assuntos
Doença de Alzheimer , Receptores de N-Metil-D-Aspartato , Doença de Alzheimer/metabolismo , Ácido Aspártico/metabolismo , Benzazepinas , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Humanos , Masculino , Tomografia por Emissão de Pósitrons/métodos , Receptores de N-Metil-D-Aspartato/metabolismo , Reprodutibilidade dos Testes , Tomografia Computadorizada por Raios X
10.
Neuroimage ; 247: 118829, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34923134

RESUMO

Learning-induced neuroplastic changes, further modulated by content and setting, are mirrored in brain functional connectivity (FC). In animal models, selective serotonin reuptake inhibitors (SSRIs) have been shown to facilitate neuroplasticity. This is especially prominent during emotional relearning, such as fear extinction, which may translate to clinical improvements in patients. To investigate a comparable modulation of neuroplasticity in humans, 99 healthy subjects underwent three weeks of emotional (matching faces) or non-emotional learning (matching Chinese characters to unrelated German nouns). Shuffled pairings of the original content were subsequently relearned for the same time. During relearning, subjects received either a daily dose of the SSRI escitalopram or placebo. Resting-state functional magnetic resonance imaging was performed before and after the (re-)learning phases. FC changes in a network comprising Broca's area, the medial prefrontal cortex, the right inferior temporal and left lingual gyrus were modulated by escitalopram intake. More specifically, it increased the bidirectional connectivity between medial prefrontal cortex and lingual gyrus for non-emotional and the connectivity from medial prefrontal cortex to Broca's area for emotional relearning. The context dependence of these effects together with behavioral correlations supports the assumption that SSRIs in clinical practice improve neuroplasticity rather than psychiatric symptoms per se. Beyond expanding the complexities of learning, these findings emphasize the influence of external factors on human neuroplasticity.


Assuntos
Escitalopram/farmacologia , Aprendizagem/efeitos dos fármacos , Imageamento por Ressonância Magnética/métodos , Plasticidade Neuronal/efeitos dos fármacos , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Adulto , Áustria , Método Duplo-Cego , Emoções/efeitos dos fármacos , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Masculino , Rememoração Mental/efeitos dos fármacos , Modelos Estatísticos
11.
Front Neurosci ; 15: 666000, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602964

RESUMO

The accurate segmentation of in vivo magnetic resonance imaging (MRI) data is a crucial prerequisite for the reliable assessment of disease progression, patient stratification or the establishment of putative imaging biomarkers. This is especially important for the hippocampal formation, a brain area involved in memory formation and often affected by neurodegenerative or psychiatric diseases. FreeSurfer, a widely used automated segmentation software, offers hippocampal subfield delineation with multiple input options. While a single T1-weighted (T1) sequence is regularly used by most studies, it is also possible and advised to use a high-resolution T2-weighted (T2H) sequence or multispectral information. In this investigation it was determined whether there are differences in volume estimations depending on the input images and which combination of these deliver the most reliable results in each hippocampal subfield. 41 healthy participants (age = 25.2 years ± 4.2 SD) underwent two structural MRIs at three Tesla (time between scans: 23 days ± 11 SD) using three different structural MRI sequences, to test five different input configurations (T1, T2, T2H, T1 and T2, and T1 and T2H). We compared the different processing pipelines in a cross-sectional manner and assessed reliability using test-retest variability (%TRV) and the dice coefficient. Our analyses showed pronounced significant differences and large effect sizes between the processing pipelines in several subfields, such as the molecular layer (head), CA1 (head), hippocampal fissure, CA3 (head and body), fimbria and CA4 (head). The longitudinal analysis revealed that T1 and multispectral analysis (T1 and T2H) showed overall higher reliability across all subfields than T2H alone. However, the specific subfields had a substantial influence on the performance of segmentation results, regardless of the processing pipeline. Although T1 showed good test-retest metrics, results must be interpreted with caution, as a standard T1 sequence relies heavily on prior information of the atlas and does not take the actual fine structures of the hippocampus into account. For the most accurate segmentation, we advise the use of multispectral information by using a combination of T1 and high-resolution T2-weighted sequences or a T2 high-resolution sequence alone.

12.
Psychoneuroendocrinology ; 133: 105381, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34416504

RESUMO

The sex hormones testosterone and estradiol influence brain structure and function and are implicated in the pathogenesis, prevalence and disease course of major depression. Recent research employing gender-affirming hormone treatment (GHT) of gender dysphoric individuals and utilizing positron emission tomography (PET) indicates increased serotonin transporter binding upon high-dosages of testosterone treatment. Here, we investigated the effects of GHT on levels of monoamine oxidase A (MAO-A), another key target of antidepressant treatment. Participants underwent PET with the radioligand [11C]harmine to assess cerebral MAO-A distribution volumes (VT) before and four months after initiation of GHT. By the time this study was terminated for technical reasons, 18 transgender individuals undergoing GHT (11 transmen, TM and 7 transwomen, TW) and 17 cis-gender subjects had been assessed. Preliminary analysis of available data revealed statistically significant MAO-A VT reductions in TM under testosterone treatment in six of twelve a priori defined regions of interest (middle frontal cortex (-10%), anterior cingulate cortex (-9%), medial cingulate cortex (-10.5%), insula (-8%), amygdala (-9%) and hippocampus (-8.5%, all p<0.05)). MAO-A VT did not change in TW receiving estrogen treatment. Despite the limited sample size, pronounced MAO-A VT reduction could be observed, pointing towards a potential effect of testosterone. Considering MAO-A's central role in regulation of serotonergic neurotransmission, changes to MAO-A VT should be further investigated as a possible mechanism by which testosterone mediates risk for, symptomatology of, and treatment response in affective disorders.


Assuntos
Encéfalo , Monoaminoxidase , Testosterona , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Monoaminoxidase/efeitos dos fármacos , Monoaminoxidase/metabolismo , Tomografia por Emissão de Pósitrons , Testosterona/administração & dosagem , Testosterona/farmacologia
13.
Front Neurosci ; 15: 609485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33841073

RESUMO

Ketamine is a powerful glutamatergic long-lasting antidepressant, efficient in intractable major depression. Whereas ketamine's immediate psychomimetic side-effects were linked to glutamate changes, proton MRS (1H-MRS) showed an association between the ratio of glutamate and glutamine and delayed antidepressant effect emerging ∼2 h after ketamine administration. While most 1H-MRS studies focused on anterior cingulate, recent functional MRI connectivity studies revealed an association between ketamine's antidepressant effect and disturbed connectivity patterns to the posterior cingulate cortex (PCC), and related PCC dysfunction to rumination and memory impairment involved in depressive pathophysiology. The current study utilized the state-of-the-art single-voxel 3T sLASER 1H-MRS methodology optimized for reproducible measurements. Ketamine's effects on neurochemicals were assessed before and ∼3 h after intravenous ketamine challenge in PCC. Concentrations of 11 neurochemicals, including glutamate (CRLB ∼ 4%) and glutamine (CRLB ∼ 13%), were reliably quantified with the LCModel in 12 healthy young men with between-session coefficients of variation (SD/mean) <8%. Also, ratios of glutamate/glutamine and glutamate/aspartate were assessed as markers of synaptic function and activated glucose metabolism, respectively. Pairwise comparison of metabolite profiles at baseline and 193 ± 4 min after ketamine challenge yielded no differences. Minimal detectable concentration differences estimated with post hoc power analysis (power = 80%, alpha = 0.05) were below 0.5 µmol/g, namely 0.39 µmol/g (∼4%) for glutamate, 0.28 µmol/g (∼10%) for Gln, ∼14% for glutamate/glutamine and ∼8% for glutamate/aspartate. Despite the high sensitivity to detect between-session differences in glutamate and glutamine concentrations, our study did not detect delayed glutamatergic responses to subanesthetic ketamine doses in PCC.

14.
J Affect Disord ; 286: 149-157, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33725614

RESUMO

BACKGROUND: While the association between relationship status and the development of depressive symptoms in the general population were reported previously, its relation to the severity and the course of major depressive disorder (MDD) as well as the treatment patterns and response rates needs to be elucidated. METHODS: The present international multicenter cross-sectional study performed by the European Group for the Study of Resistant Depression (GSRD) investigated socio-demographic and clinical patterns of relationship status in a real-world sample of 1410 adult in- and outpatients with MDD as primary diagnosis. RESULTS: While 49.9% of all MDD patients were partnered, 25.4% were separated, and 24.8% were single. Single relationship status was linked to younger mean age, earlier mean age of onset, and current suicidal risk. Being separated was related to older mean age, unemployment, greater symptom severity, current suicidal risk, and add-on treatment strategies. Partnered relationship status was associated with less frequent current suicidal risk. LIMITATIONS: The retrospective assessment of treatment response that was exclusively based on psychopharmacotherapeutic strategies should be critically considered and weighed while interpreting the present results providing novel insights into the complex interaction of relationship status with the clinical phenotype of MDD. CONCLUSIONS: Although MDD patients living in relationships do not seem to be omitted from the evolution of MDD, they may be spared from chronicity and suicidality. Hence, being aware of the current relationship status might support clinicians in the diagnostic and therapeutic process towards optimized management of such challenging clinical phenomena and their negative consequences.


Assuntos
Transtorno Depressivo Maior , Adulto , Estudos Transversais , Depressão , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/epidemiologia , Humanos , Pacientes Ambulatoriais , Estudos Retrospectivos
15.
Handb Clin Neurol ; 175: 117-140, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33008520

RESUMO

Most psychiatric disorders demonstrate sex differences in their prevalence and symptomatology, and in their response to treatment. These differences are particularly pronounced in mood disorders. Differences in sex hormone levels are among the most overt distinctions between males and females and are thus an intuitive underpinning for these clinical observations. In fact, treatment with estrogen and testosterone was shown to exert antidepressant effects, which underscores this link. Changes to monoaminergic signaling in general, and serotonergic transmission in particular, are understood as central components of depressive pathophysiology. Thus, modulation of the serotonin system may serve as a mechanism via which sex hormones exert their clinical effects in mental health disorders. Over the past 20 years, various experimental approaches have been applied to identify modes of influence of sex and sex hormones on the serotonin system. This chapter provides an overview of different molecular components of the serotonin system, followed by a review of studies performed in animals and in humans with the purpose of elucidating sex hormone effects. Particular emphasis will be placed on studies performed with positron emission tomography, a method that allows for human in vivo molecular imaging and, therefore, assessment of effects in a clinically representative context. The studies addressed in this chapter provide a wealth of information on the interaction between sex, sex hormones, and serotonin in the brain. In general, they offer evidence for the concept that the influence of sex hormones on various components of the serotonin system may serve as an underpinning for the clinical effects these hormones demonstrate.


Assuntos
Depressão , Transtornos de Enxaqueca , Animais , Antidepressivos , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Masculino , Serotonina
16.
Front Psychiatry ; 11: 549903, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101078

RESUMO

INTRODUCTION: Converging evidence suggests that ketamine elicits antidepressant effects via enhanced neuroplasticity precipitated by a surge of glutamate and modulation of GABA. Magnetic resonance spectroscopic imaging (MRSI) illustrates changes to cerebral glutamate and GABA immediately following ketamine administration during dissociation. However, few studies assess subacute changes in the first hours following application, when ketamine's antidepressant effects emerge. Moreover, ketamine metabolites implicated in its antidepressant effects develop during this timeframe. Thus, this study aimed to investigate subacute changes in cerebral Glx (glutamate + glutamine), GABA and their ratio in seven brain regions central to depressive pathophysiology and treatment. METHODS: Twenty-five healthy subjects underwent two multivoxel MRS scans using a spiral encoded, MEGA-edited LASER-localized 3D-MRSI sequence, at baseline and 2 h following intravenous administration of racemic ketamine (0.8 mg/kg bodyweight over 50 min). Ketamine, norketamine and dehydronorketamine plasma levels were determined at routine intervals during and after infusion. Automated region-of-interest (ROI)-based quantification of mean metabolite concentration was used to assess changes in GABA+/total creatine (tCr), Glx/tCr, and GABA+/Glx ratios in the thalamus, hippocampus, insula, putamen, rostral anterior cingulate cortex (ACC), caudal ACC, and posterior cingulate cortex. Effects of ketamine on neurotransmitter levels and association with ketamine- and metabolite plasma levels were tested with repeated measures analyses of variance (rmANOVA) and correlation analyses, respectively. RESULTS: For GABA+/tCr rmANOVA revealed a measurement by region interaction effect (puncorr < 0.001) and post hoc pairwise comparisons showed a reduction in hippocampal GABA+/tCr after ketamine (pcorr = 0.02). For Glx/tCr and GABA+/Glx neither main effects of measurement nor measurement by region interactions were observed (all puncorr > 0.05). Furthermore, no statistically significant associations between changes in any of the neurotransmitter ratios and plasma levels of ketamine, norketamine, or dehydronorketamine were observed (pcorr > 0.05). CONCLUSION: This study provides evidence for decreased hippocampal GABA+/tCr ratio 2 h following ketamine administration. As MRS methodology measures total levels of intra- and extracellular GABA, results might indicate drug induced alterations in GABA turnover. Our study in healthy humans suggests that changes in GABA levels, particularly in the hippocampus, should be further assessed for their relevance to ketamine´s antidepressant effects.

17.
Front Aging Neurosci ; 12: 185, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848697

RESUMO

The vascular endothelium in the brain is an essential part of the blood-brain-barrier (BBB) because of its very tight structure to secure a functional and molecular separation of the brain from the rest of the body and to protect neurons from pathogens and toxins. Impaired transport of metabolites across the BBB due to its increasing dysfunction affects brain health and cognitive functioning, thus providing a starting point of neurodegenerative diseases. The term "cerebral metabolic syndrome" is proposed to highlight the importance of lifestyle factors in neurodegeneration and to describe the impact of increasing BBB dysfunction on neurodegeneration and dementia, especially in elderly patients. If untreated, the cerebral metabolic syndrome may evolve into dementia. Due to the high energy demand of the brain, impaired glucose transport across the BBB via glucose transporters as GLUT1 renders the brain increasingly susceptible to neurodegeneration. Apoptotic processes are further supported by the lack of essential metabolites of the phosphocholine synthesis. In Alzheimer's disease (AD), inflammatory and infectious processes at the BBB increase the dysfunction and might be pace-making events. At this point, the potentially highly relevant role of the thrombocytic amyloid precursor protein (APP) in endothelial inflammation of the BBB is discussed. Chronic inflammatory processes of the BBB transmitted to an increasing number of brain areas might cause a lasting build-up of spreading, pore-forming ß-amyloid fragments explaining the dramatic progression of the disease. In the view of the essential requirement of an early diagnosis to investigate and implement causal therapeutic strategies against dementia, brain imaging methods are of great importance. Therefore, status and opportunities in the field of diagnostic imaging of the living human brain will be portrayed, comprising diverse techniques such as positron emissions tomography (PET) and functional magnetic resonance imaging (fMRI) to uncover the patterns of atrophy, protein deposits, hypometabolism, and molecular as well as functional alterations in AD.

18.
Cortex ; 129: 68-79, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32438011

RESUMO

Investigating the effects of the gender-affirming hormone treatment of transgender people using neuroimaging provides a unique opportunity to study the impact of high dosages of sex hormones on human brain structure and function. This line of research is of relevance from a basic neuroscientific as well as from a psychiatric viewpoint. Prevalence rates, etiopathology, and disease course of many psychiatric disorders exhibit sex differences which are linked to differences in sex hormone levels. Here, we review recent neuroimaging studies from others and our group that investigate the effects of gender-affirming hormone treatment in a longitudinal design utilizing structural and functional magnetic resonance imaging and positron emission tomography. Studies point to a general anabolic and anticatabolic effect of testosterone on grey and white matter structure, whereas estradiol and antiandrogen treatment seems to have partly opposite effects. Moreover, preliminary research indicates that gender-affirming hormone treatment influences serotonergic neurotransmission, a finding that is especially interesting for psychiatry. A clear picture of a hormonal influence on brain activity has yet to emerge. In conclusion, the available evidence reviewed here clearly indicates that sex hormone applications influence brain structure and function in the adult human brain.


Assuntos
Identidade de Gênero , Pessoas Transgênero , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Hormônios Esteroides Gonadais , Humanos , Masculino , Caracteres Sexuais
19.
Front Hum Neurosci ; 13: 289, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507394

RESUMO

Reward anticipation is essential for directing behavior toward positively valenced stimuli, creating motivational salience. Task-related activation of the ventral striatum (VS) has long been used as a target for understanding reward function. However, some subjects may not be able to perform the respective tasks because of their complexity or subjects' physical or mental disabilities. Moreover, task implementations may differ, which results in limited comparability. Hence, developing a task-free method for evaluating neural gain circuits is essential. Research has shown that fluctuations in neuronal activity at rest denoted individual differences in the brain functional networks. Here, we proposed novel models to predict the activation of the VS during gain anticipation, using the functional magnetic resonance imaging data of 45 healthy subjects acquired during a monetary incentive delay task and under rest. In-sample validation and held-out data were used to estimate the generalizability of the models. It was possible to predict three measures of reward activation (sensitivity, average, maximum) from resting-state functional connectivity (Pearson's r = 0.38-0.54 in validation data). Especially high contributions to the models were observed from the default mode network. These findings highlight the potential of using functional connectivity at rest as a task-free alternative for predicting activation in the VS, offering a possibility to estimate reward response in the broader sampling of subject populations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...