Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 133(5-6): 773-788, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38243607

RESUMO

BACKGROUND AND AIMS: Quantifying spatial species richness is useful to describe biodiversity patterns across broad geographical areas, especially in large, poorly known plant groups. We explore patterns and predictors of species richness across Africa in one such group, the palaeotropical genus Grewia L. (Malvaceae). METHODS: Grewia species richness was quantified by extracting herbarium records from GBIF and Tropicos and creating geographical grids at varying spatial scales. We assessed predictors of species richness using spatial regression models with 30 environmental variables. We explored species co-occurrence in Madagascar at finer resolutions using Schoener's index and compared species range sizes and International Union for Conservation of Nature status among ecoregions. Lastly, we derived a trait matrix for a subset of species found in Madagascar to characterize morphological diversity across space. KEY RESULTS: Grewia species occur in 50 countries in Africa, with the highest number of species in Madagascar (93, with 80 species endemic). Species richness is highest in Madagascar, with ≤23 Grewia species in a grid cell, followed by coastal Tanzania/Kenya (≤13 species) and northern South Africa and central Angola (11 species each). Across Africa, higher species richness was predicted by variables related to aridity. In Madagascar, a greater range in environmental variables best predicted species richness, consistent with geographical grid cells of highest species richness occurring near biome/ecoregion transitions. In Madagascar, we also observe increasing dissimilarity in species composition with increasing geographical distance. CONCLUSIONS: The spatial patterns and underlying environmental predictors that we uncover in Grewia represent an important step in our understanding of plant distribution and diversity patterns across Africa. Madagascar boasts nearly twice the Grewia species richness of the second most species-rich country in Africa, which might be explained by complex topography and environmental conditions across small spatial scales.


Assuntos
Biodiversidade , Madagáscar , África , Geografia
2.
Ecol Evol ; 12(2): e8632, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35222982

RESUMO

The spiny thicket of southwestern Madagascar represents an extreme and ancient landscape with extraordinary levels of biodiversity and endemism. Few hypotheses exist for explaining speciation in the region and few plant studies have explored hypotheses for species diversification. Here, we investigate three species in the endemic genus Megistostegium (Malvaceae) to evaluate phylogeographic structure and explore the roles of climate, soil, and paleoclimate oscillations on population divergence and speciation throughout the region. We combine phylogenetic and phylogeographic inference of RADseq data with ecological niche modeling across space and time. Population structure is concurrent with major rivers in the region and we identify a new, potentially important biogeographic break coincident with several landscape features. Our data further suggests that niches occupied by species and populations differ substantially across their distribution. Paleodistribution modeling provide evidence that past climatic change could be responsible for the current distribution, population structure, and maintenance of species in Megistostegium.

3.
Sci Rep ; 11(1): 11972, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099752

RESUMO

Aliger gigas is an economically important and vulnerable marine species. We present a new mitogenome of A. gigas from the Mexican Caribbean and use the eight publicly available Strombidae mitogenomes to analyze intra- and interspecific variation. We present the most complete phylogenomic understanding of Hypsogastropoda to date (17 superfamilies, 39 families, 85 genera, 109 species) to revisit the phylogenetic position of the Stromboidea and evaluate divergence times throughout the phylogeny. The A. gigas mitogenome comprises 15,460 bp including 13 PCGs, 22 tRNAs, and two rRNAs. Nucleotide diversity suggested divergence between the Mexican and Colombian lineages of A. gigas. Interspecific divergence showed high differentiation among Strombidae species and demonstrated a close relationship between A. gigas and Strombus pugilis, between Lambis lambis and Harpago chiragra, and among Tridentarius dentatus/Laevistrombus canarium/Ministrombus variabilis. At the intraspecific level, the gene showing the highest differentiation is ATP8 and the lowest is NAD4L, whereas at the interspecific level the NAD genes show the highest variation and the COX genes the lowest. Phylogenomic analyses confirm that Stromboidea belongs in the non-Latrogastropoda clade and includes Xenophoridea. The phylogenomic position of other superfamilies, including those of previously uncertain affiliation, is also discussed. Finally, our data indicated that Stromboidea diverged into two principal clades in the early Cretaceous while Strombidae diversified in the Paleocene, and lineage diversification within A. gigas took place in the Pleistocene.


Assuntos
Gastrópodes/classificação , Gastrópodes/genética , Animais , Sequência de Bases , Região do Caribe , Extratos Celulares/genética , Mitocôndrias/genética , Mitocôndrias/metabolismo , NAD/metabolismo , Filogenia , RNA Ribossômico/metabolismo , RNA de Transferência/metabolismo
4.
Syst Biol ; 61(5): 763-77, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22556200

RESUMO

We collected ~29 kb of sequence data using Roche 454 pyrosequencing in order to estimate the timing and pattern of diversification in the carnivorous pitcher plant Sarracenia alata. Utilizing modified protocols for reduced representation library construction, we generated sequence data from 86 individuals across 10 populations from throughout the range of the species. We identified 76 high-quality and high-coverage loci (containing over 500 SNPs) using the bioinformatics pipeline PRGmatic. Results from a Bayesian clustering analysis indicate that populations are highly structured, and are similar in pattern to the topology of a population tree estimated using *BEAST. The pattern of diversification within Sarracenia alata implies that riverine barriers are the primary factor promoting population diversification, with divergence across the Mississippi River occurring more than 60,000 generations before present. Further, significant patterns of niche divergence and the identification of several outlier loci suggest that selection may contribute to population divergence. Our results demonstrate the feasibility of using next-generation sequencing to investigate intraspecific genetic variation in nonmodel species.


Assuntos
Meio Ambiente , Variação Genética , Proteínas de Plantas/genética , Sarraceniaceae/genética , Teorema de Bayes , Núcleo Celular/genética , Dados de Sequência Molecular , Filogenia , Filogeografia , Sarraceniaceae/classificação , Alinhamento de Sequência , Análise de Sequência de DNA , Sudeste dos Estados Unidos , Texas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...