Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(41): e2306145120, 2023 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-37792509

RESUMO

Glucose-dependent insulinotropic polypeptide receptor (GIPR) is a potential drug target for metabolic disorders. It works with glucagon-like peptide-1 receptor and glucagon receptor in humans to maintain glucose homeostasis. Unlike the other two receptors, GIPR has at least 13 reported splice variants (SVs), more than half of which have sequence variations at either C or N terminus. To explore their roles in endogenous peptide-mediated GIPR signaling, we determined the cryoelectron microscopy (cryo-EM) structures of the two N terminus-altered SVs (referred as GIPR-202 and GIPR-209 in the Ensembl database, SV1 and SV2 here, respectively) and investigated the outcome of coexpressing each of them in question with GIPR in HEK293T cells with respect to ligand binding, receptor expression, cAMP (adenosine 3,5-cyclic monophosphate) accumulation, ß-arrestin recruitment, and cell surface localization. It was found that while both N terminus-altered SVs of GIPR neither bound to the hormone nor elicited signal transduction per se, they suppressed ligand binding and cAMP accumulation of GIPR. Meanwhile, SV1 reduced GIPR-mediated ß-arrestin 2 responses. The cryo-EM structures of SV1 and SV2 showed that they reorganized the extracellular halves of transmembrane helices 1, 6, and 7 and extracellular loops 2 and 3 to adopt a ligand-binding pocket-occupied conformation, thereby losing binding ability to the peptide. The results suggest a form of signal bias that is constitutive and ligand-independent, thus expanding our knowledge of biased signaling beyond pharmacological manipulation (i.e., ligand specific) as well as constitutive and ligand-independent (e.g., SV1 of the growth hormone-releasing hormone receptor).


Assuntos
Polipeptídeo Inibidor Gástrico , Receptores dos Hormônios Gastrointestinais , Humanos , Polipeptídeo Inibidor Gástrico/genética , Polipeptídeo Inibidor Gástrico/metabolismo , Polipeptídeo Inibidor Gástrico/farmacologia , Ligantes , Microscopia Crioeletrônica , Células HEK293 , Transdução de Sinais/fisiologia , Receptores dos Hormônios Gastrointestinais/genética , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/metabolismo , Peptídeos , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo
2.
Nat Commun ; 13(1): 1057, 2022 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-35217653

RESUMO

Glucose homeostasis, regulated by glucose-dependent insulinotropic polypeptide (GIP), glucagon-like peptide-1 (GLP-1) and glucagon (GCG) is critical to human health. Several multi-targeting agonists at GIPR, GLP-1R or GCGR, developed to maximize metabolic benefits with reduced side-effects, are in clinical trials to treat type 2 diabetes and obesity. To elucidate the molecular mechanisms by which tirzepatide, a GIPR/GLP-1R dual agonist, and peptide 20, a GIPR/GLP-1R/GCGR triagonist, manifest their multiplexed pharmacological actions over monoagonists such as semaglutide, we determine cryo-electron microscopy structures of tirzepatide-bound GIPR and GLP-1R as well as peptide 20-bound GIPR, GLP-1R and GCGR. The structures reveal both common and unique features for the dual and triple agonism by illustrating key interactions of clinical relevance at the near-atomic level. Retention of glucagon function is required to achieve such an advantage over GLP-1 monotherapy. Our findings provide valuable insights into the structural basis of functional versatility of tirzepatide and peptide 20.


Assuntos
Diabetes Mellitus Tipo 2 , Receptores de Glucagon , Microscopia Crioeletrônica , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polipeptídeo Inibidor Gástrico , Glucagon/metabolismo , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Glucose/uso terapêutico , Humanos , Peptídeos/química , Receptores Acoplados a Proteínas G
3.
Elife ; 102021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-34254582

RESUMO

Glucose-dependent insulinotropic polypeptide (GIP) is a peptide hormone that exerts crucial metabolic functions by binding and activating its cognate receptor, GIPR. As an important therapeutic target, GIPR has been subjected to intensive structural studies without success. Here, we report the cryo-EM structure of the human GIPR in complex with GIP and a Gs heterotrimer at a global resolution of 2.9 Å. GIP adopts a single straight helix with its N terminus dipped into the receptor transmembrane domain (TMD), while the C terminus is closely associated with the extracellular domain and extracellular loop 1. GIPR employs conserved residues in the lower half of the TMD pocket to recognize the common segments shared by GIP homologous peptides, while uses non-conserved residues in the upper half of the TMD pocket to interact with residues specific for GIP. These results provide a structural framework of hormone recognition and GIPR activation.


Assuntos
Polipeptídeo Inibidor Gástrico/química , Polipeptídeo Inibidor Gástrico/metabolismo , Receptores dos Hormônios Gastrointestinais/química , Receptores dos Hormônios Gastrointestinais/metabolismo , Animais , Linhagem Celular , Microscopia Crioeletrônica , Humanos , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica , Conformação Proteica em alfa-Hélice , Domínios Proteicos
4.
Nat Commun ; 11(1): 1272, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152292

RESUMO

Glucagon-like peptide-1 receptor (GLP-1R) is a class B G protein-coupled receptor that plays an important role in glucose homeostasis and treatment of type 2 diabetes. Structures of full-length class B receptors were determined in complex with their orthosteric agonist peptides, however, little is known about their extracellular domain (ECD) conformations in the absence of orthosteric ligands, which has limited our understanding of their activation mechanism. Here, we report the 3.2 Å resolution, peptide-free crystal structure of the full-length human GLP-1R in an inactive state, which reveals a unique closed conformation of the ECD. Disulfide cross-linking validates the physiological relevance of the closed conformation, while electron microscopy (EM) and molecular dynamic (MD) simulations suggest a large degree of conformational dynamics of ECD that is necessary for binding GLP-1. Our inactive structure represents a snapshot of the peptide-free GLP-1R and provides insights into the activation pathway of this receptor family.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/química , Sequência de Aminoácidos , Apoproteínas/química , Dissulfetos/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/ultraestrutura , Humanos , Ligantes , Simulação de Dinâmica Molecular , Conformação Proteica , Estabilidade Proteica , Receptores de Glucagon/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...