Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Rev Cardiovasc Med ; 25(2): 56, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39077334

RESUMO

Myokines are a group of cytokines or polypeptides released from skeletal muscle during exercise. Growing evidence suggests that myokines are associated with the development of cardiovascular disease (CVD). Moreover, several myokines in peripheral blood exhibit dynamic changes in different CVD stages. This review summarizes the potential roles of myokines such as myostatin, irisin, brain-derived neurotrophic factor, mitsugumin 53, meteorin-like, and apelin in various CVD, including myocardial infarction, heart failure, atherosclerosis, hypertension, and diabetes. The association of these myokines with biomarkers currently being used in clinical practice is also discussed. Furthermore, the review considers the emerging role of myokines in CVD and addresses the challenges remaining in translating these discoveries into novel clinical biomarkers for CVD.

2.
Accid Anal Prev ; 203: 107639, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38763064

RESUMO

The interactions between vehicles and pedestrians are complex due to their interdependence and coupling. Understanding these interactions is crucial for the development of autonomous vehicles, as it enables accurate prediction of pedestrian crossing intentions, more reasonable decision-making, and human-like motion planning at unsignalized intersections. Previous studies have devoted considerable effort to analyzing vehicle and pedestrian behavior and developing models to forecast pedestrian crossing intentions. However, these studies have two limitations. First, they mainly focus on investigating variables that explain pedestrian crossing behavior rather than predicting pedestrian crossing intentions. Moreover, some factors such as age, sensation seeking and social value orientation, used to establish decision-making models in these studies are not easily accessible in real-world scenarios. In this paper, we explored the critical factors influencing the decision-making processes of human drivers and pedestrians respectively by using virtual reality technology. To do this, we considered available kinematic variables and analyzed the internal relationship between motion parameters and pedestrian behavior. The analysis results indicate that longitudinal distance and vehicle acceleration are the most influential factors in pedestrian decision-making, while pedestrian speed and longitudinal distance also play a crucial role in determining whether the vehicle yields or not. Furthermore, a mathematical relationship between a pedestrian's intention and kinematic variables is established for the first time, which can help dynamically assess when pedestrians desire to cross. Finally, the results obtained in driver-yielding behavior analysis provide valuable insights for autonomous vehicle decision-making and motion planning.


Assuntos
Condução de Veículo , Tomada de Decisões , Intenção , Pedestres , Realidade Virtual , Humanos , Pedestres/psicologia , Masculino , Adulto , Condução de Veículo/psicologia , Feminino , Adulto Jovem , Aceleração , Fenômenos Biomecânicos , Acidentes de Trânsito/prevenção & controle , Caminhada/psicologia
3.
Toxicol Appl Pharmacol ; 486: 116951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38705401

RESUMO

Cardiac lipotoxicity is a prevalent consequence of lipid metabolism disorders occurring in cardiomyocytes, which in turn precipitates the onset of heart failure. Mimetics of brain-derived neurotrophic factor (BDNF), such as 7,8-dihydroxyflavone (DHF) and 7,8,3'-trihydroxyflavone (THF), have demonstrated significant cardioprotective effects. However, it remains unclear whether these mimetics can protect cardiomyocytes against lipotoxicity. The aim of this study was to examine the impact of DHF and THF on the lipotoxic effects induced by palmitic acid (PA), as well as the concurrent mitochondrial dysfunction. H9c2 cells were subjected to treatment with PA alone or in conjunction with DHF or THF. Various factors such as cell viability, lactate dehydrogenase (LDH) release, death ratio, and mitochondrial function including mitochondrial membrane potential (MMP), mitochondrial-derived reactive oxygen species (mito-SOX) production, and mitochondrial respiration were assessed. PA dose-dependently reduced cell viability, which was restored by DHF or THF. Additionally, both DHF and THF decreased LDH content, death ratio, and mito-SOX production, while increasing MMP and regulating mitochondrial oxidative phosphorylation in cardiomyocytes. Moreover, DHF and THF specifically activated Akt signaling. The protective effects of DHF and THF were abolished when an Akt inhibitor was used. In conclusion, BDNF mimetics attenuate PA-induced injury in cardiomyocytes by alleviating mitochondrial impairments through the activation of Akt signaling.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Flavonas , Potencial da Membrana Mitocondrial , Miócitos Cardíacos , Ácido Palmítico , Proteínas Proto-Oncogênicas c-akt , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Ácido Palmítico/toxicidade , Ácido Palmítico/farmacologia , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ratos , Linhagem Celular , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Flavonas/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Mitocôndrias Cardíacas/efeitos dos fármacos , Mitocôndrias Cardíacas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
4.
Cell Signal ; 112: 110924, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37838311

RESUMO

Clinical application of the widely used chemotherapeutic agent, doxorubicin (DOX), is limited by its cardiotoxicity. Mitochondrial dysfunction has been revealed as a crucial factor in DOX-induced cardiotoxicity. 7,8,3'-Trihydroxyflavone (THF) is a mimetic brain-derived neurotrophic factor with neuroprotective effects. However, the potential effects of THF on DOX-induced cardiomyocyte damage and mitochondrial disorders remain unclear. H9c2 cardiomyoblasts were exposed to DOX and/or THF at different concentrations. Cardiomyocyte injury was evaluated using lactate dehydrogenase (LDH) assay and Live/Dead cytotoxicity kit. Meanwhile, mitochondrial membrane potential (MMP), morphology, mitochondrial reactive oxygen species (mito-ROS) production, and the oxygen consumption rate of cardiomyocytes were measured. The protein levels of key mitochondria-related factors such as adenosine monophosphate-activated protein kinase (AMPK), mitofusin 2 (Mfn2), dynamin-related protein 1 (Drp1), and optic atrophy protein 1 (OPA1) were examined. We found that THF reduced LDH content and death ratio of DOX-treated cardiomyocytes in a concentration-dependent manner, while increasing MMP without significantly affecting the routine and maximum capacity of mitochondrial respiration. Mechanistically, THF increased the activity of Akt and protein levels of Mfn2 and heme oxygenase 1 (HO-1). Moreover, inhibition of Akt reversed the protective role of THF, increased mito-ROS levels, and repressed Mfn2 and HO-1 expression. Therefore, we conclude, THF relieves DOX-induced cardiotoxicity and improves mitochondrial function by activating Akt-mediated Mfn2 and HO-1 pathways. This finding provides promising therapeutic insights for DOX-induced cardiac dysfunction.


Assuntos
Cardiotoxicidade , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cardiotoxicidade/metabolismo , Transdução de Sinais , Doxorrubicina/toxicidade , Miócitos Cardíacos/metabolismo , Mitocôndrias/metabolismo , Apoptose , Estresse Oxidativo
6.
Free Radic Biol Med ; 198: 83-91, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36764626

RESUMO

The relationship between mitochondrial dysfunction and cardiovascular disease pathogenesis is well recognized. 7,8-Dihydroxyflavone (7,8-DHF), a mimetic of brain-derived neurotrophic factor, inhibits mitochondrial impairments and improves cardiac function. However, the regulatory role of 7,8-DHF in the mitochondrial function of cardiomyocytes is not fully understood. To investigate the potential mito-protective effects of 7,8-DHF in cardiomyocytes, we treated H9c2 or HL-1 cells with the mitochondrial respiratory complex I inhibitor rotenone (Rot) as an in vitro model of mitochondrial dysfunction. We found that 7,8-DHF effectively eliminated various concentrations of Rot-induced cell death and reduced lactate dehydrogenase release. 7,8-DHF significantly improved mitochondrial membrane potential and inhibited mitochondrial reactive oxygen species. Moreover, 7,8-DHF decreased routine and leak respiration, restored protein levels of mitochondrial complex I-IV, and increased ATP production in Rot-treated H9c2 cells. The protective role of 7,8-DHF in Rot-induced damage was validated in HL-1 cells. Nuclear phosphorylation protein expression of signal transducer and activator of transcription 3 (STAT3) was significantly increased by 7,8-DHF. The present study suggests that 7,8-DHF rescues Rot-induced cytotoxicity by inhibiting mitochondrial dysfunction and promoting nuclear translocation of p-STAT3 in cardiomyocytes, thus nominating 7,8-DHF as a new pharmacological candidate agent against mitochondrial dysfunction in cardiac diseases.


Assuntos
Miócitos Cardíacos , Rotenona , Miócitos Cardíacos/metabolismo , Rotenona/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Mitocôndrias/metabolismo
7.
Sensors (Basel) ; 23(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36679834

RESUMO

The connected and automated vehicle (CAV) is a promising technology, anticipated to enhance the safety and effectiveness of mobility [...].


Assuntos
Condução de Veículo , Veículos Automotores , Veículos Autônomos , Tecnologia
8.
Eur J Pharmacol ; 938: 175420, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36427535

RESUMO

Brain-derived neurotrophic factor (BDNF)/tyrosine kinase receptor B (TrkB) pathway is a therapeutic target in cardiac diseases. A BDNF mimetic, 7,8-dihydroxyflavone (7,8-DHF), is emerging as a protective agent in cardiomyocytes; however, its potential role in cardiac fibroblasts (CFs) and fibrosis remains unknown. Thus, we aimed to explore the effects of 7,8-DHF on cardiac fibrosis and the possible mechanisms. Myocardial ischemia (MI) and transforming growth factor-ß1 (TGF-ß1) were used to establish models of cardiac fibrosis. Hematoxylin & eosin and Masson's trichrome stains were used for histological analysis and determination of collagen content in mouse myocardium. Cell viability kit, EdU (5-ethynyl-2'-deoxyuridine) assay and immunofluorescent stain were employed to examine the effects of 7,8-DHF on the proliferation and collagen production of CFs. The levels of collagen I, α-smooth muscle actin (α-SMA), TGF-ß1, Smad2/3, and Akt as well as circadian rhythm-related signals including brain and muscle Arnt-like protein 1 (Bmal1), period 2 (Per2), and cryptochrome 2 (Cry2) were analyzed. Treatment with 7,8-DHF markedly alleviated cardiac fibrosis in MI mice. It inhibited the activity of CFs accompanied by decreasing number of EdU-positive cells and downregulation of collagen I, α-SMA, TGF-ß1, and phosphorylation of Smad2/3. 7,8-DHF significantly restored the dysregulation of Bmal1, Per2, and Cry2, but inhibited the overactive Akt. Further, inhibition of Bmal1 by SR9009 effectively attenuated CFs proliferation and collagen production of CFs. In summary, these findings indicate that 7,8-DHF attenuates cardiac fibrosis and regulates circadian rhythmic signals, at least partly, by inhibiting Bmal1/Akt pathway, which may provide new insights into therapeutic cardiac remodeling.


Assuntos
Ritmo Circadiano , Flavonas , Miocárdio , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Fibroblastos , Fibrose , Miocárdio/metabolismo , Miocárdio/patologia , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Flavonas/farmacologia
9.
Chinese Journal of Epidemiology ; (12): 529-535, 2023.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-985523

RESUMO

The world has paid a heavy price for the pandemic of the emerging respiratory communicable disease, so more concern about communicable disease surveillance and early warning has been aroused. This paper briefly reviews the establishment of the surveillance and early warning system of respiratory communicable diseases in China, discusses its future development and introduces the novel surveillance methods and early warning models for the purpose of establishment of a multi-channel surveillance and multi-dimensional early warning system of communicable diseases in the future and the improvement of the prevention and control of emerging respiratory communicable diseases in China.


Assuntos
Humanos , Vigilância da População/métodos , Doenças Transmissíveis/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , China/epidemiologia , Pandemias , Surtos de Doenças/prevenção & controle
10.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1045901

RESUMO

With the outbreak of infectious diseases, more and more attention has been paid to surveillance and early warning work. Timely and accurate monitoring data is the basis of infectious diseases prevention and control. Effective early warning methods for infectious diseases can improve the timeliness and sensitivity of early warning work. This paper briefly introduces the intelligent early warning model of infectious diseases, summarizes the emerging surveillance and early warning methods of infectious diseases, and seeks the possibility of diversified surveillance and early warning in different epidemic stages and different outbreak scenarios of infectious diseases. This paper puts forward the idea of constructing a diversified method system of infectious diseases surveillance and early warning based on multi-stages and multi-scenarios and discusses the future development trend of infectious diseases surveillance and early warning, in order to provide reference for improving the construction level of infectious diseases surveillance and early warning system in China.


Assuntos
Humanos , Vigilância da População/métodos , Doenças Transmissíveis/epidemiologia , Surtos de Doenças/prevenção & controle , Epidemias , China/epidemiologia
11.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-1046224

RESUMO

With the outbreak of infectious diseases, more and more attention has been paid to surveillance and early warning work. Timely and accurate monitoring data is the basis of infectious diseases prevention and control. Effective early warning methods for infectious diseases can improve the timeliness and sensitivity of early warning work. This paper briefly introduces the intelligent early warning model of infectious diseases, summarizes the emerging surveillance and early warning methods of infectious diseases, and seeks the possibility of diversified surveillance and early warning in different epidemic stages and different outbreak scenarios of infectious diseases. This paper puts forward the idea of constructing a diversified method system of infectious diseases surveillance and early warning based on multi-stages and multi-scenarios and discusses the future development trend of infectious diseases surveillance and early warning, in order to provide reference for improving the construction level of infectious diseases surveillance and early warning system in China.


Assuntos
Humanos , Vigilância da População/métodos , Doenças Transmissíveis/epidemiologia , Surtos de Doenças/prevenção & controle , Epidemias , China/epidemiologia
12.
J Geriatr Cardiol ; 19(11): 853-866, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36561053

RESUMO

BACKGROUND: Pathological cardiac hypertrophy is a compensated response to various stimuli and is considered a key risk factor for heart failure. 7,8-Dihydroxyflavone (7,8-DHF) is a flavonoid derivative that acts as a small-molecule brain-derived neurotrophic factor mimetic. The present study aimed to explore the potential role of 7,8-DHF in cardiac hypertrophy. METHODS: Kunming mice and H9c2 cells were exposed to transverse aortic constriction or isoproterenol (ISO) with or without 7,8-DHF, respectively. F-actin staining was performed to calculate the cell area. Transcriptional levels of hypertrophic markers, including ANP, BNP, and ß-MHC, were detected. Echocardiography, hematoxylin-eosin staining, and transmission electron microscopy were used to examine the cardiac function, histology, and ultrastructure of ventricles. Protein levels of mitochondria-related factors, such as adenosine monophosphate-activated protein kinase (AMPK), and peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), were detected. RESULTS: 7,8-DHF inhibited compensated and decompensated cardiac hypertrophy, diminished the cross-sectional area, and alleviated the mitochondrial disorders of cardiomyocytes. Meanwhile, 7,8-DHF reduced the cell size and repressed the mRNA levels of the hypertrophic markers of ISO-treated cardiomyocytes. In addition, 7,8-DHF activated AMPK and PGC-1α signals without affecting the protein levels of mitochondrial dynamics-related molecules. The effects of 7,8-DHF were eliminanted by Compound C, an AMPK inhibitor. CONCLUSIONS: These findings suggest that 7,8-DHF inhibited cardiac hypertrophy and mitochondrial dysfunction by activating AMPK signaling, providing a potential agent for the treatment of pathological cardiac hypertrophy.

13.
Sensors (Basel) ; 22(10)2022 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-35632352

RESUMO

To further advance the performance and safety of autonomous mobile robots (AMRs), an integrated chassis control framework is proposed. In the longitudinal motion control module, a velocity-tracking controller was designed with the integrated feedforward and feedback control algorithm. Besides, the nonlinear model predictive control (NMPC) method was applied to the four-wheel steering (4WS) path-tracking controller design. To deal with the failure of key actuators, an active fault-tolerant control (AFTC) algorithm was designed by reallocating the driving or braking torques of the remaining normal actuators, and the weighted least squares (WLS) method was used for torque reallocation. The simulation results show that AMRs can advance driving stability and braking safety in the braking failure condition with the utilization of AFTC and recapture the braking energy during decelerations.

14.
Front Pharmacol ; 13: 813272, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370645

RESUMO

Background and Purpose: Atrial metabolic remodeling plays a critical role in the pathogenesis of atrial fibrillation (AF). Sirtuin3 (Sirt3) plays an important role in energy homeostasis. However, the effect of Sirt3 agonist Honokiol (HL) on AF is unclear. Therefore, the aim of this study is to determine the effect of HL on atrial metabolic remodeling in AF and to explore possible mechanisms. Experimental Approach: irt3 and glycogen deposition in left atria of AF patients were examined. Twenty-one rabbits were divided into sham, P (pacing for 3 weeks), P + H treatment (honokiol injected with pacing for 3 weeks). The HL-1 cells were subjected to rapid pacing at 5 Hz for 24 h, in the presence or absence of HL and overexpression or siRNA of Sirt3 by transfection. Metabolic factors, circulating metabolites, atrial electrophysiology, ATP level, and glycogens deposition were detected. Acetylated protein and activity of its enzymes were detected. Key Results: Sirt3 was significantly down-regulated in AF patients and rabbit/HL-1cell model, resulting in the abnormal expression of its downstream metabolic key factors, which were significantly restored by HL. Meanwhile, AF induced an increase of the acetylation level in long-chain acyl-CoA dehydrogenase (LCAD), AceCS2 and GDH, following decreasing of activity of it enzymes, resulting in abnormal alterations of metabolites and reducing of ATP, which was inhibited by HL. The Sirt3 could regulate acetylated modification of key metabolic enzymes, and the increase of Sirt3 rescued AF induced atrial metabolic remodeling. Conclusion and Implications: HL inhibited atrial metabolic remodeling in AF via the Sirt3 pathway. The present study may provide a novel therapeutical strategy for AF.

15.
Histol Histopathol ; 36(11): 1133-1143, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34327702

RESUMO

Fibrosis across diverse organ systems is one of the leading causes of morbidity and mortality by inducing progressive architectural remodeling and organ dysfunction. Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine kinase receptor B (TrkB) play crucial roles in regulating neural survival, development, function and plasticity in the central and the peripheral nervous system. Previous studies demonstrated that the BDNF/TrkB pathway is widely distributed in different cell types such as neuron, epithelial cell, hepatocyte, and cardiomyocyte. Recently, there is increasing recognition that BDNF and TrkB are also expressed in fibroblasts in different organs. Moreover, growing evidence was obtained regarding the functional roles of BDNF/TrkB signaling in organ and tissue fibrosis. Thus, this review summarizes the basic molecular characteristics of the BDNF/TrkB cascade and the findings of the crucial roles and therapeutic value in organ and tissue fibrosis including pulmonary fibrosis, hepatic fibrosis, renal fibrosis, cardiac fibrosis, bladder fibrosis and skin fibrosis. Small molecule BDNF mimetic and BDNF-related non-coding RNAs are also discussed for developing new therapeutic approaches for fibrotic disorders.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/metabolismo , Neurônios/metabolismo , RNA não Traduzido/metabolismo , Receptor trkB/metabolismo , Transdução de Sinais , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Fibrose/metabolismo , Humanos
16.
Environ Toxicol Pharmacol ; 85: 103624, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33617954

RESUMO

Cardiotoxicity is one of the primary limitations in the clinical use of the anticancer drug doxorubicin (DOX). However, the role of microRNAs (miRNAs) in DOX-induced cardiomyocyte death has not yet been covered. To investigate this, we observed a significant increase in miR-98 expression in neonatal rat ventricular myocytes after DOX treatment, and MTT, LIVE/Dead and Viability/Cytotoxicity staining showed that miR-98 mimic inhibited DOX-induced cell death. This was also confirmed by Flow cytometry and Annexin V-FITC/PI staining. Interestingly, the protein expression of caspase-8 was upregulated by miR-98 mimics during this process, whereas Fas and RIP3 were downregulated. In addition, the effect of miR-98 against the expression of Fas and RIP3 were restored by the specific caspase-8 inhibitor Z-IETD-FMK. Thus, we demonstrate that miR-98 protects cardiomyocytes from DOX-induced injury by regulating the caspase-8-dependent Fas/RIP3 pathway. Our findings enhance understanding of the therapeutic role of miRNAs in the treatment of DOX-induced cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos , Cardiotoxicidade/genética , Caspase 8/metabolismo , Doxorrubicina , MicroRNAs , Miócitos Cardíacos/metabolismo , Animais , Cardiotoxicidade/metabolismo , Sobrevivência Celular , Células Cultivadas , Potencial da Membrana Mitocondrial , Miócitos Cardíacos/fisiologia , Ratos Sprague-Dawley , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais , Receptor fas/metabolismo
17.
Life (Basel) ; 11(1)2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33477900

RESUMO

Brain-derived neurotrophic factor (BDNF) is one of the most abundantneurotrophins in the central nervous system. Numerous studies suggestthat BDNF has extensive roles by binding to its specific receptor, tropomyosin-related kinase receptor B (TrkB), and thereby triggering downstream signaling pathways. Recently, growing evidence highlightsthat the BDNF/TrkB pathway is expressed in the cardiovascular system andclosely associated with the development and outcome of cardiovascular diseases (CVD), including coronary artery disease, heart failure, cardiomyopathy, hypertension, and metabolic diseases. Furthermore, circulating BDNF has also been revealed as a new potential biomarker for both diagnosis and prognosis of CVD. In this review, we discuss the current evidence of the emerging role of BDNF/TrkBsignalingand address the challenges that remain in translating these discoveries to novel therapeutic strategies for CVD.

19.
Acta Pharmacol Sin ; 41(8): 1085-1092, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32203084

RESUMO

Hyperlipidemia (HPL) characterized by metabolic disorder of lipids and cholesterol is one of the important risk factors for cardiovascular diseases. Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a potent circulating regulator of LDL through its ability to induce degradation of the low-density lipoprotein cholesterol receptor (LDLR) in the lysosome of hepatocytes. Aloe-emodin (AE) is one of potentially bioactive components of Chinese traditional medicine Daming capsule. In this study we evaluated the HPL-lowering efficacy of AE in both in vivo and in vitro HPL models. High-fat diet-induced rats were treated with AE (100 mg/kg per day, ig) for 6 weeks. We found that AE administration significantly decreased the levels of total cholesterol (TC) and LDL in the serum and liver tissues. Moreover, AE administration ameliorated HPL-induced hepatic lipid aggregation. But AE administration did not significantly inhibit HMG-CoA reductase activity in the liver of HPL rats. A cellular model of HPL was established in human hepatoma (HepG2) cells treated with cholesterol (20 µg/mL) and 25-hydroxycholesterol (2 µg/mL), which exhibited markedly elevated cholesterol levels. The increased cholesterol levels could be reversed by subsequent treatment with AE (30 µM). In both the in vivo and in vitro HPL models, we revealed that AE selectively suppressed the sterol-regulatory element-binding protein-2 (SREBP-2) and hepatocyte nuclear factor (HNF)1α-mediated PCSK9 signaling, which in turn upregulated LDL receptor (LDLR) and promoted LDL uptake. This study demonstrates that AE reduces cholesterol content in HPL rats by inhibiting the hepatic PCSK9/LDLR pathway.


Assuntos
Antraquinonas/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Hiperlipidemias/tratamento farmacológico , Inibidores de PCSK9 , Animais , Dieta Hiperlipídica , Células Hep G2 , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Ratos Wistar , Receptores de LDL/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
20.
Free Radic Biol Med ; 145: 187-197, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31574344

RESUMO

Brain-derived neurotrophic factor (BDNF)/tropomyosin-related kinase B (TrkB) pathway is associated with ischemic heart diseases (IHD). 7,8-dihydroxyflavone (7,8-DHF), BDNF mimetic, is a potent agonist of TrkB. We aimed to investigate the effects and the underlying mechanisms of 7,8-DHF on cardiac ischemia. Myocardial ischemic mouse model was induced by ligation of left anterior descending coronary artery. 7,8-DHF (5 mg/kg) was administered intraperitoneally two days after ischemia for four weeks. Echocardiography, HE staining and transmission electron microscope were used to examine the function, histology and ultrastructure of the heart. H9c2 cells were treated with hydrogen peroxide (H2O2), 7,8-DHF or TrkB inhibitor ANA-12. The effects of 7,8-DHF on cell viability, mitochondrial membrane potential (MMP) and mitochondrial superoxide generation were examined. Furthermore, mitochondrial fission and protein expression of mitochondrial dynamics (Mfn2 [mitofusin 2], OPA1 [optic atrophy 1], Drp1 [dynamin-related protein 1] and Fis-1 [fission 1]) was detected by mitotracker green staining and western blot, respectively. 7,8-DHF attenuated cardiac dysfunction and cardiomyocyte abnormality of myocardial ischemic mice. Moreover, 7,8-DHF increased cell viability and reduced cell death accompanied by improving MMP, inhibiting mitochondrial superoxide and preventing excessive mitochondrial fission of H2O2-treated H9c2 cells. The cytoprotective effects of 7,8-DHF were antagonized by ANA-12. Mechanistically, 7,8-DHF repressed OMA1-dependent conversion of L-OPA1 into S-OPA1, which was abolished by Akt inhibitor. In conclusion, 7,8-DHF protects against cardiac ischemic injury by inhibiting the proteolytic cleavage of OPA1. These findings provide a novel pharmacological effect of 7,8-DHF on mitochondrial dynamics and a new potential target for IHD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , GTP Fosfo-Hidrolases/genética , Glicoproteínas de Membrana/genética , Isquemia Miocárdica/tratamento farmacológico , Atrofia Óptica Autossômica Dominante/tratamento farmacológico , Proteínas Tirosina Quinases/genética , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Morte Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Flavonas/farmacologia , GTP Fosfo-Hidrolases/química , Coração/efeitos dos fármacos , Coração/fisiopatologia , Humanos , Peróxido de Hidrogênio/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial , Isquemia Miocárdica/genética , Isquemia Miocárdica/patologia , Fármacos Neuroprotetores/farmacologia , Atrofia Óptica Autossômica Dominante/genética , Atrofia Óptica Autossômica Dominante/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA