Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Curr Alzheimer Res ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38566375

RESUMO

BACKGROUND: A plethora of studies has shown the utility of several chemical dyes due to their affinity to bind Aß to enable visualization of plaques under light or fluorescence microscope, and some of them showed affinity to bind neurofibrillary tangles (NFT) as well. However, only a few of them have the propensity to bind both senile plaques (SP) and NFT simultaneously. OBJECTIVE: In our current study, we aimed to modify the K114 dye and the staining procedure to substantially improve the staining of amyloid plaques in both human and rodent brains and neurofibrillary tangles in the human brain. METHODS: We modified the K114 solution and the staining procedure using Sudan Black as a modifier. Additionally, to evaluate the target of the modified K114, we performed double labeling of K114 and increased Aß against three different epitopes. We used 5 different antibodies to detect phosphorylated tau to understand the specific targets that modified K114 binds. RESULTS: Dual labeling using hyperphosphorylated antibodies against AT8, pTau, and TNT1 revealed that more than 80% hyperphosphorylated tau colocalized with tangles that were positive for modified K114, whereas more than 70% of the hyperphosphorylated tau colocalized with modified K114. On the other hand, more than 80% of the plaques that were stained with Aß MOAB-2 were colocalized with modified K114. CONCLUSION: Our modified method can label amyloid plaques within 5 min in the rat brain and within 20 min in the human brain. Our results indicated that modified K114 could be used as a valuable tool for detecting amyloid plaques and tangles with high contrast and resolution relative to other conventional fluorescence markers.

2.
Neurotoxicol Teratol ; 100: 107289, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37689269

RESUMO

The assessment of the sensitivity and specificity of any potential biomarker against the gold standard is an important step in the process of its qualification by regulatory authorities. Such qualification is an important step towards incorporating the biomarker into the panel of tools available for drug development. In the current study we analyzed the sensitivity and specificity of T2 MRI relaxometry to detect trimethyltin-induced neurotoxicity in rats. Seventy-five male Sprague-Dawley rats were injected with a single intraperitoneal dose of either TMT (8, 10, 11, or 12 mg/kg) or saline (2 ml/kg) and imaged with 7 T MRI before and 3, 7, 14, and 21 days after injection using a quantitative T2 mapping. Neurohistopathology (the gold standard in the case of neurotoxicity) was performed at the end of the observation and used as an outcome qualifier in receiver-operator characteristic (ROC) curve analysis of T2 changes as a predictor of neurotoxicity. TMT treatment led to a significant increase in T2 values in many brain areas. The biggest changes in T2 values were seen around the lateral ventricles, which was interpreted as ventricular dilation. The area under the ROC curve for the volume of the lateral ventricles was 0.878 with the optimal sensitivity/specificity of 0.805/0.933, respectively. T2 MRI is a promising method for generating a non-invasive biomarkers of neurotoxicity, which shows the dose-response behavior with substantial sensitivity and specificity. While its performance was strong in the TMT model, further characterization of the sensitivity and specificity of T2 MRI with other neurotoxicants is warranted.


Assuntos
Imageamento por Ressonância Magnética , Síndromes Neurotóxicas , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Estudos Prospectivos , Imageamento por Ressonância Magnética/métodos , Síndromes Neurotóxicas/diagnóstico por imagem , Síndromes Neurotóxicas/patologia , Biomarcadores
3.
Exp Biol Med (Maywood) ; 248(7): 633-640, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37208932

RESUMO

Neurotoxicity assessments are generally performed using laboratory animals. However, as in vitro neurotoxicity models are continuously refined to reach adequate predicative concordance with in vivo responses, they are increasingly used for some endpoints of neurotoxicity. In this study, gestational day 80 fetal rhesus monkey brain tissue was obtained for neural stem cells (NSCs) isolation. Cells from the entire hippocampus were harvested, mechanically dissociated, and cultured for proliferation and differentiation. Immunocytochemical staining and biological assays demonstrated that the harvested hippocampal cells exhibited typical NSC phenotypes in vitro: (1) cells proliferated vigorously and expressed NSC markers nestin and sex-determining region Y-box 2 (SOX2) and (2) cells differentiated into neurons, astrocytes, and oligodendrocytes, as confirmed by positive staining with class III ß-tubulin, glial fibrillary acidic protein, and galactocerebroside, respectively. The NSC produced detectable responses following neurotoxicant exposures (e.g. trimethyltin and 3-nitropropionic acid). Our results indicated that non-human primate NSCs may be a practical tool to study the biology of neural cells and to evaluate the neurotoxicity of chemicals in vitro, thereby providing data that are translatable to humans and may also reduce the number of animals needed for developmental neurotoxicological studies.


Assuntos
Células-Tronco Neurais , Animais , Neurônios/metabolismo , Diferenciação Celular/fisiologia , Células Cultivadas , Encéfalo
4.
Behav Brain Res ; 428: 113882, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35398231

RESUMO

Cerebral amyloid angiopathy or CAA is a type of vascular dementia that can cause neuroinflammation, ischemia and hemorrhage, among other complications. CAA results from the deposition of amyloid beta (Aß) in blood vessels and is frequently observed in individuals with Alzheimer's disease (AD). One functional output of those pathological changes is measurable cognitive decline. Still not well understood, however, is the impact of gender or sex on the pathology of CAA, as well as CAA-induced cognitive decline. Here, we studied how sex impacts deposition of CAA-related pathology and the associated cognitive decline. We observed differential hippocampal pathology as far as regions of deposition, type of morphology, and total amount of pathology when assessing CAA pathology via (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB)-labeling, as well as neurodegeneration via Fluoro Jade C (FJC)-labeling, and lysosomal associated membrane protein deposition via LAMP-1 labeling. In accordance with other studies, our data suggest female TG-SwDI mice exhibit more severe pathological alterations in CAA pathology. Additionally, behavioral assessments revealed an impact of genotype that was more pronounced in TG-SwDI females. While the primary measure of learning and memory, the water maze, suggests an overall effect of genotype, effects in measures of locomotor activity and anxiety-like behavior suggest reduced habituation in females. This could be due to a lower retention for the tasks. Results of this study offer significant insight into the importance of examining effects of sex on CAA.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/complicações , Peptídeos beta-Amiloides/metabolismo , Animais , Cognição , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
J Magn Reson Imaging ; 56(5): 1499-1504, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35278003

RESUMO

BACKGROUND: Currently, the gadolinium retention in the brain after the use of contrast agents is studied by T1 -weighted magnetic resonance imaging (MRI) (T1 w) and T1 mapping. The former does not provide easily quantifiable data and the latter requires prolonged scanning and is sensitive to motion. T2 mapping may provide an alternative approach. Animal studies of gadolinium retention are complicated by repeated intravenous (IV) dosing, whereas intraperitoneal (IP) injections might be sufficient. HYPOTHESIS: T2 mapping will detect the changes in the rat brain due to gadolinium retention, and IP administration is equivalent to IV for long-term studies. STUDY TYPE: Prospective longitudinal. ANIMAL MODEL: A total of 31 Sprague-Dawley rats administered gadodiamide IV (N = 8) or IP (N = 8), or saline IV (N = 6) or IP (N = 9) 4 days per week for 5 weeks. FIELD STRENGTH/SEQUENCES: A 7 T, T1 w, and T2 mapping. ASSESSMENT: T2 relaxation and image intensities in the deep cerebellar nuclei were measured pre-treatment and weekly for 5 weeks. Then brains were assessed for neuropathology (N = 4) or gadolinium content using inductively coupled plasma mass spectrometry (ICP-MS, N = 12). STATISTICAL TESTS: Repeated measures analysis of variance with post hoc Student-Newman-Keuls tests and Hedges' effect size. RESULTS: Gadolinium was detected by both approaches; however, T2 mapping was more sensitive (effect size 2.32 for T2 vs. 0.95 for T1 w), and earlier detection (week 3 for T2 vs. week 4 for T1 w). ICP-MS confirmed the presence of gadolinium (3.076 ± 0.909 nmol/g in the IV group and 3.948 ± 0.806 nmol/g in the IP group). There was no significant difference between IP and IV groups (ICP-MS, P = 0.109; MRI, P = 0.696). No histopathological abnormalities were detected in any studied animal. CONCLUSION: T2 relaxometry detects gadolinium retention in the rat brain after multiple doses of gadodiamide irrespective of the route of administration. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 1.


Assuntos
Meios de Contraste , Compostos Organometálicos , Animais , Encéfalo/diagnóstico por imagem , Gadolínio/farmacologia , Gadolínio DTPA , Imageamento por Ressonância Magnética/métodos , Estudos Prospectivos , Ratos , Ratos Sprague-Dawley
6.
Metab Brain Dis ; 37(3): 639-651, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35064472

RESUMO

Although several histochemical markers for senile plaques (SP) and neurofibrillary tangles (NFTs) have been synthesized since the discovery of plaques in Alzheimer's disease (AD), only a handful of these markers stain both lesions in the human brain. Despite discovery of its ability to stain both SP and NFT over 13 years ago, the styrylbenzene derivative, (E,E)-1-fluoro-2,5-bis-(3-hydroxycarbonyl-4-hydroxy)styrylbenzene (FSB), has only recently gained attention, primarily due to its ability to function as a contrasting agent for MRI imaging of AD pathology in vivo. The structure of the compound is a nuclide with quantized angular momentum, which explains its value as a contrast agent. In the current study, modification of the established staining procedure produced meaningful improvement in the labeling of plaques and tangles in the human brain. We utilized two rodent models of AD to show FSB's value in labeling both Aß and tau lesions. Furthermore, our current modification allows us to detect SP in rodent brains in 15 min and both SP and NFT in human brains within 20 min. The study presents new evidence regarding potential binding targets for FSB as well as optimization protocols in which various parameters have been manipulated to show how section thickness, use of frozen versus paraffin-embedded sections, and selection of staining media can affect the intensity of the plaque and tangle staining in the brain. To determine the target FSB potentially binds, we performed double immunolabeling of FSB with mOC64 (a conformational antibody that label Aß1-42). Results indicated that all plaques in the brain colocalized with mOC64, suggesting that FSB has the potential to bind all Aß containing plaques, making it a very sensitive detector of multiple forms of SP... All antibodies were assessed for the degree of colocalization with FSB in order to better understand potential binding targets. We found more than 90% hyperphosphorylated Tau against AT8, AT180 and S214 colocalized with FSB labeled tangles. On the other hand, more than 90% of the mOC64 containing plaques colocalized with FSB stained plaques. Our results indicate that FSB is a valuable marker that can be used to detect AD pathologies in human and rodent brains with greater fluorescence intensity relative to other conventional fluorescence markers.


Assuntos
Doença de Alzheimer , Placa Amiloide , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Humanos , Imageamento por Ressonância Magnética , Emaranhados Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Proteínas tau/metabolismo
7.
Nutr Neurosci ; 25(7): 1374-1391, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33345721

RESUMO

OBJECTIVE: Parkinson's disease (PD) is a progressive motor disease of unknown etiology. Although neuroprotective ability of endogenous bile acid, tauroursodeoxycholic acid (TUDCA), shown in various diseases, including an acute model of PD,the potential therapeutic role of TUDCA in progressive models of PD that exhibit all aspects of PD has not been elucidated. In the present study, mice were assigned to one of four treatment groups: (1) Probenecid (PROB); (2) TUDCA, (3) MPTP + PROB (MPTPp); and (3) TUDCA + MPTPp. Methods: Markers for dopaminergic function, neuroinflammation, oxidative stress and autophagy were assessed using high performance liquid chromatography (HPLC), immunohistochemistry (IHC) and western blot (WB) methods. Locomotion was measured before and after treatments. Results: MPTPp decreased the expression of dopamine transporters (DAT) and tyrosine hydroxylase (TH), indicating dopaminergic damage, and induced microglial and astroglial activation as demonstrated by IHC analysis. MPTPp also decreased DA and its metabolites as demonstrated by HPLC analysis. Further, MPTPp-induced protein oxidation; increased LAMP-1 expression indicated autophagy and the promotion of alpha-synuclein (α-SYN) aggregation. Discussion: Pretreatment with TUDCA protected against dopaminergic neuronal damage, prevented the microglial and astroglial activation, as well as the DA and DOPAC reductions caused by MPTPp. TUDCA by itself did not produce any significant change, with data similar to the negative control group. Pretreatment with TUDCA prevented protein oxidation and autophagy, in addition to inhibiting α-SYN aggregation. Although TUDCA pretreatment did not significantly affect locomotion, only acute treatment effects were measured, indicating more extensive assessments may be necessary to reveal potential therapeutic effects on behavior. Together, these results suggest that autophagy may be involved in the progression of PD and that TUDCA may attenuate these effects. The efficacy of TUDCA as a novel therapy in patients with PD clearly warrants further study.


Assuntos
Fármacos Neuroprotetores , Doença de Parkinson , Animais , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/prevenção & controle , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Tauroquenodesoxicólico/uso terapêutico
8.
Int J Toxicol ; 40(4): 367-379, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33878910

RESUMO

The organotin, trimethyltin (TMT), is a highly toxic compound. In this study, silver-stained rat brain sections were qualitatively and quantitatively evaluated for degeneration after systemic treatment with TMT. Degenerated neurons were counted using image analysis methods available in the HALO image analysis software. Specific brain areas including the cortex, inferior and superior colliculus, and thalamus were quantitatively analyzed. Our results indicate extensive and widespread damage to the rat brain after systemic administration of TMT. Qualitative results suggest severe TMT-induced toxicity 3 and 7 days after the administration of TMT. Trimethyltin toxicity was greatest in the hippocampus, olfactory area, cerebellum, pons, mammillary nucleus, inferior and superior colliculus, hypoglossal nucleus, thalamus, and cerebellar Purkinje cells. Quantification showed that the optic layer of the superior colliculus exhibited significantly more degeneration compared to layers above and below. The inferior colliculus showed greater degeneration in the dorsal area relative to the central area. Similarly, in cortical layers, there was greater neurodegeneration in deeper layers compared to superficial layers. Quantification of damage in various thalamic nuclei showed that the greatest degeneration occurred in midline and intralaminar nuclei. These results suggest selective neuronal network vulnerability to TMT-related toxicity in the rat brain.


Assuntos
Encéfalo/efeitos dos fármacos , Compostos de Trimetilestanho/toxicidade , Animais , Encéfalo/patologia , Masculino , Ratos , Ratos Sprague-Dawley
9.
J Neurosci Methods ; 353: 109082, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33508413

RESUMO

BACKGROUND: Congo Red (CR) has been used for its binding affinity to amyloid fibrils for the better part of a century. Recently, our laboratory has demonstrated its ability to bind to tau protein as well. NEW METHOD: Here we describe a novel methodology for fast, thorough, whole-brain labeling of amyloid plaques with CR via perfusion. We tested five different variants which altered the volume of CR, the speed of perfusion, and the solution CR was solubilized in to determine the best results. RESULTS AND CONCLUSION: We determined that intra-cardiac perfusion of animals with 0.5 % CR in 100 ml of 50 % ethanol or perfusion with 0.5 of CR in 100 ml of 10 % neutral buffer formalin both perfused at a rate of 30 ml/min for 3.3 min resulted in the clearest CR labeling, with little to no background noise. Both variants were compatible with subsequent immunolabeling procedures for NU-1, as well as Ferritin and GFAP. Compared to traditional CR plaque labeling methodology, this new method allows for quick whole brain CR-labeling. This reduces the amount of time from days to mere minutes. It also reduces potential for variability that would result from staining slides in batches. Thus, CR-perfusion is a rapid, thorough method that can be utilized to rapidly stain amyloid in the rodent brain.


Assuntos
Doença de Alzheimer , Placa Amiloide , Peptídeos beta-Amiloides , Animais , Vermelho Congo , Perfusão , Ratos
10.
J Appl Toxicol ; 41(7): 996-1006, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33140470

RESUMO

Neurotoxicity studies are important in the preclinical stages of drug development process, because exposure to certain compounds that may enter the brain across a permeable blood brain barrier damages neurons and other supporting cells such as astrocytes. This could, in turn, lead to various neurological disorders such as Parkinson's or Huntington's disease as well as various dementias. Toxicity assessment is often done by pathologists after these exposures by qualitatively or semiquantitatively grading the severity of neurotoxicity in histopathology slides. Quantification of the extent of neurotoxicity supports qualitative histopathological analysis and provides a better understanding of the global extent of brain damage. Stereological techniques such as the utilization of an optical fractionator provide an unbiased quantification of the neuronal damage; however, the process is time-consuming. Advent of whole slide imaging (WSI) introduced digital image analysis which made quantification of neurotoxicity automated, faster and with reduced bias, making statistical comparisons possible. Although automated to a certain level, simple digital image analysis requires manual efforts of experts which is time-consuming and limits analysis of large datasets. Digital image analysis coupled with a deep learning artificial intelligence model provides a good alternative solution to time-consuming stereological and simple digital analysis. Deep learning models could be trained to identify damaged or dead neurons in an automated fashion. This review has focused on and discusses studies demonstrating the role of deep learning in segmentation of brain regions, toxicity detection and quantification of degenerated neurons as well as the estimation of area/volume of degeneration.


Assuntos
Inteligência Artificial , Aprendizado Profundo , Toxicologia , Algoritmos , Encéfalo , Redes Neurais de Computação
11.
Neurotoxicology ; 81: 172-179, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33045284

RESUMO

We have described that prolonged sevoflurane exposure at a clinically-relevant concentration of 2.5 % caused neuronal cell death in the developing monkey brain. Postnatal day 5 or 6 rhesus monkeys (n = 3) were exposed to 2.5 % sevoflurane for 8 h. Monkeys kept at environmental conditions in the procedure room served as controls (n = 3). Brain tissues were harvested four hours after sevoflurane exposure for histological analysis, and RNA or protein extraction. MicroRNA (miRNA) profiling on the frontal cortex of monkey brains was performed using next-generation sequencing. 417 miRNAs were identified in the frontal cortex, where most neuronal cell death was observed. 7 miRNAs were differentially expressed in frontal cortex after sevoflurane exposure. Five of these were expressed at significantly lower levels than controls and the other two miRNAs were expressed significantly higher. These differentially expressed miRNAs (DEMs) were then loaded to the Ingenuity Pathway Analysis database for pathway analysis, in which targeting information was available for 5 DEMs. The 5 DEMs target 2,919 mRNAs which are involved in pathways that contribute to various cellular functions. Of note, 78 genes that are related to axon guidance signaling were targeted, suggesting that development of the neural circuit may be affected after sevoflurane exposure. Such changes may have long-term effects on brain development and function. These findings are supplementary to our previous observations and provide more evidence for better understanding the adverse effects of sevoflurane on the developing brain after an 8 -h exposure.


Assuntos
Anestésicos Inalatórios/toxicidade , Encéfalo/efeitos dos fármacos , Perfilação da Expressão Gênica , MicroRNAs/genética , Neurônios/efeitos dos fármacos , Sevoflurano/toxicidade , Transcriptoma/efeitos dos fármacos , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Redes Reguladoras de Genes , Macaca mulatta , Masculino , MicroRNAs/metabolismo , Neurônios/metabolismo , Neurônios/patologia , Mapas de Interação de Proteínas , Fatores de Tempo
12.
Metab Brain Dis ; 35(8): 1371-1383, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32852699

RESUMO

Although there are multiple histochemical tracers available to label plaques and tangles in the brain to evaluate neuropathology in Alzheimer disease (AD), few of them are versatile in nature and compatible with immunohistochemical procedures. Congo Red (CR) is an anisotropic organic stain discovered to label amyloid beta (Aß) plaques in the brain. Unfortunately, its use is underappreciated due to its low resolution and brightness as stated in previous studies using bright field microscopy. Here, we modified a previous method to localize both plaques and tangles in brains from humans and a transgenic rodent model of AD for fluorescence microscopic visualization. The plaque staining affinities displayed by CR were compared with fibrillar pattern labeling seen with Thioflavin S. This study summarizes the optimization of protocols in which various parameters have been finetuned. To determine the target CR potentially binds, we have performed double labeling with different antibodies against Aß as well as phosphorylated Tau. The plaque staining affinities exhibited by CR are compared with those associated with the diffuse pattern of labeling seen with antibodies directed against different epitopes of Aß. Neither CP13, TNT2 or TOC1 binds all the neurofibrillary tangles as revealed by CR labeling in the human brain. Additionally, we also evaluated double labeling with AT8, AT180, and PHF1. Interestingly, PHF-1 shows 40% colocalization and AT8 shows 15% colocalization with NFT. Thus, CR is a much better marker to detect AD pathologies in human and rodent brains with higher fluorescence intensity relative to other conventional fluorescence markers.


Assuntos
Encéfalo/metabolismo , Corantes/metabolismo , Vermelho Congo/metabolismo , Emaranhados Neurofibrilares/metabolismo , Placa Amiloide/metabolismo , Coloração e Rotulagem/métodos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Química Encefálica/fisiologia , Corantes/análise , Vermelho Congo/análise , Humanos , Camundongos , Camundongos Transgênicos , Emaranhados Neurofibrilares/química , Emaranhados Neurofibrilares/patologia , Imagem Óptica/métodos , Placa Amiloide/química , Placa Amiloide/patologia , Ratos , Roedores
13.
Int J Toxicol ; 39(4): 294-306, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32468881

RESUMO

This study consisted of a qualitative and quantitative assessment of neuropathological changes in kainic acid (KA)-treated adult male rats. Rats were administered a single 10 mg/kg intraperitoneal injection of KA or the same volume of saline and sacrificed 24 or 48 hours posttreatment. Brains were collected, sectioned coronally (∼ 81 slices), and stained with amino cupric silver to reveal degenerative changes. For qualitative assessment of neural degeneration, sectioned material was evaluated by a board-certified pathologist, and the level of degeneration was graded based upon a 4-point scale. For measurement of quantitative neural degeneration in response to KA treatment, the HALO digital image analysis software tool was used. Quantitative measurements of specific regions within the brain were obtained from silver-stained tissue sections with quantitation based on stain color and optical density. This quantitative evaluation method identified degeneration primarily in the cerebral cortex, septal nuclei, amygdala, olfactory bulb, hippocampus, thalamus, and hypothalamus. The KA-produced neuronal degeneration in the cortex was primarily in the piriform, insular, rhinal, and cingulate areas. In the hippocampus, the dentate gyrus was found to be the most affected area. Our findings indicate global neurotoxicity due to KA treatment. Certain brain structures exhibited more degeneration than others, reflecting differential sensitivity or vulnerability of neurons to KA.


Assuntos
Encéfalo/efeitos dos fármacos , Ácido Caínico/toxicidade , Neurônios/efeitos dos fármacos , Síndromes Neurotóxicas , Animais , Encéfalo/patologia , Masculino , Neurônios/patologia , Síndromes Neurotóxicas/patologia , Ratos Sprague-Dawley
14.
Drug Metab Dispos ; 48(6): 447-458, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32193355

RESUMO

Safety assessments of new drug candidates are an important part of the drug development and approval process. Often, possible sex-associated susceptibilities are not adequately addressed, and better assessment tools are needed. We hypothesized that hepatic transcript profiles of cytochrome P450 (P450) enzymes can be used to predict sex-associated differences in drug metabolism and possible adverse events. Comprehensive hepatic transcript profiles were generated for F344 rats of both sexes at nine ages, from 2 weeks (preweaning) to 104 weeks (elderly). Large differences in the transcript profiles of 29 drug metabolizing enzymes and transporters were found between adult males and females (8-52 weeks). Using the PharmaPendium data base, 41 drugs were found to be metabolized by one or two P450 enzymes encoded by sexually dimorphic mRNAs and thus were candidates for evaluation of possible sexually dimorphic metabolism and/or toxicities. Suspension cultures of primary hepatocytes from three male and three female adult rats (10-13 weeks old) were used to evaluate the metabolism of 11 drugs predicted to have sexually dimorphic metabolism. The pharmacokinetics of the drug or its metabolite was analyzed by liquid chromatography/tandem mass spectrometry using multiple reaction monitoring. Of those drugs with adequate metabolism, the predicted significant sex-different metabolism was found for six of seven drugs, with half-lives 37%-400% longer in female hepatocytes than in male hepatocytes. Thus, in this rat model, transcript profiles may allow identification of potential sex-related differences in drug metabolism. SIGNIFICANCE STATEMENT: The present study showed that sex-different expression of genes coding for drug metabolizing enzymes, specifically cytochrome P450s, could be used to predict sex-different drug metabolism and, thus, provide a new tool for protecting susceptible subpopulations from possible adverse drug events.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Regulação Enzimológica da Expressão Gênica , Taxa de Depuração Metabólica/genética , Animais , Células Cultivadas , Sistema Enzimático do Citocromo P-450/metabolismo , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Meia-Vida , Hepatócitos , Fígado/enzimologia , Masculino , Modelos Animais , Cultura Primária de Células , Ratos , Ratos Endogâmicos F344 , Fatores Sexuais
15.
Neurotoxicology ; 77: 181-192, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32014511

RESUMO

Bacterial cell wall endotoxins, i.e. lipopolysaccharides (LPS), are some of the original compounds shown to evoke the classic signs of systemic inflammation/innate immune response and neuroinflammation. The term neuroinflammation often is used to infer the elaboration of proinflammatory mediators by microglia elicited by neuronal targeted activity. However, it also is possible that the microglia are responding to vasculature through several signaling mechanisms. Microglial activation relative to the vasculature in the hippocampus and parietal cortex was determined after an acute exposure of a single subcutaneous injection of 2 mg/kg LPS. Antibodies to allograft inflammatory factor (Aif1, a.k.a. Iba1) were used to track and quantify morphological changes in microglia. Immunostaining of platelet/endothelial cell adhesion molecule 1 (Pecam1, a.k.a. Cd31) was used to visualize vasculature in the forebrain and glial acidic fibrillary protein (GFAP) to visualize astrocytes. Neuroinflammation and other aspects of neurotoxicity were evaluated histologically at 3 h, 6 h, 12 h, 24 h, 3 d and 14 d following LPS exposure. LPS did not cause neurodegeneration as determined by Fluoro Jade C labeling. Also, there were no signs of mouse IgG leakage from brain vasculature due to LPS. Some changes in microglia size occurred at 6 h, but by 12 h microglial activation had begun with the combined soma and proximal processes size increasing significantly (1.5-fold). At 24 h, almost all the microglia soma and proximal processes in the hippocampus, parietal cortex, and thalamus were closely associated with the vasculature and had increased almost 2.0-fold in size. In many areas where microglia were juxtaposed to vasculature, astrocytic endfeet appeared to be displaced. The microglial activation had subsided slightly by 3 d with microglial size 1.6-fold that of control. We hypothesize that acute LPS activation can result in vascular mediated microglial responses through several mechanisms: 1) binding to Cd14 and Tlr4 receptors on microglia processes residing on vasculature; 2) damaging vasculature and causing the release of cytokines; and 3) possibly astrocytic endfeet damage resulting in cytokine release. These acute responses may serve as an adaptive mechanism to exposure to circulating LPS where the microglia surround the vasculature. This could further prevent the pathogen(s) circulating in blood from entering the brain. However, diverting microglial interactions away from synaptic remodeling and other types of microglial interactions with neurons may have adverse effects on neuronal function.


Assuntos
Encefalite/imunologia , Hipocampo/irrigação sanguínea , Hipocampo/imunologia , Lipopolissacarídeos/toxicidade , Microglia/imunologia , Córtex Pré-Frontal/irrigação sanguínea , Córtex Pré-Frontal/imunologia , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Encefalite/induzido quimicamente , Feminino , Hipocampo/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Microglia/efeitos dos fármacos , Córtex Pré-Frontal/efeitos dos fármacos
16.
Mol Neurobiol ; 57(1): 217-225, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31522383

RESUMO

Numerous studies suggest a long duration of anesthesia during the late gestation period and infancy is associated with an increased risk of neuronal damage and neurocognitive impairment. The noble gas xenon is an anesthetic that is reported to have neuroprotective effects in some circumstances at certain concentrations. Currently, the effects of xenon on the brain and its potential neuroprotective properties, and/or the effects of xenon used in combination with other anesthetics, are not clearly understood and some reported data appear contradictory. In the present study, human neural stem cells were employed as a human-relevant model to evaluate the effects of xenon when it was co-administered with propofol, a frequently used anesthetic in pediatric anesthesia, and to understand the mechanism(s). The expression of polysialic acid (PSA) neural cell adhesion molecule (NCAM) on human neural stem cell-differentiated neurons was investigated as a key target molecule. PSA is a specific marker of developing neurons. It is essential for neuronal viability and plasticity. Human neural stem cells were maintained in neural differentiation medium and directed to differentiate into neuronal and glial lineages, and were exposed to propofol (50 µM) for 16 h in the presence or absence of xenon (33%). The neural stem cell-derived neurons were characterized by labelling cells with PSA-NCAM, after 5 days of differentiation. Propofol- and/or xenon-induced neurotoxicities were determined by measuring PSA immunoreactivity. A time course study showed that neuronal cell surface PSA was clearly cleaved off from NCAM by endoneuraminidase N (Endo-N), and eliminated PSA immunostaining was not re-expressed 4, 8, or 16 h after Endo-N washout. However, in the presence of 33% xenon, intense PSA staining on neuronal cell surface and processes was evident 16 h after Endo-N washout. In addition, prolonged (16 h) propofol exposure significantly decreased the positive rate of PSA-labeled neurons. When combined with xenon, propofol's adverse effects on neurons were attenuated. This work, conducted on the human neural stem cell-derived models, has provided evidence of the beneficiary effects of xenon on neurons and helps develop xenon-based anesthesia regimens in the pediatric population.


Assuntos
Anestésicos/farmacologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Células-Tronco Neurais/citologia , Neurônios/metabolismo , Ácidos Siálicos/metabolismo , Xenônio/farmacologia , Células Cultivadas , Humanos , Neurônios/efeitos dos fármacos , Neurotoxinas/toxicidade , Fatores de Tempo
17.
Mol Neurobiol ; 57(1): 200-207, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31578707

RESUMO

Early life exposure to general anesthetics can have neurotoxic consequences. Evidence indicates that xenon, a rare noble gas with anesthetic properties, may lessen neuronal damage under certain conditions. However, its potential neuroprotective properties, when used alone or in combination with other anesthetics, remain largely unknown. While it is difficult to verify the adverse effects of long duration anesthetic exposure in infants and children, the utilization of relevant non-clinical models (i.e., human-derived neural stem cells) may serve as a "bridging" model for evaluating the vulnerability of the nervous system. Neural stem cells, purchased from PhoenixSongs Biologicals, Inc., were guided to differentiate into neurons, astrocytes, and oligodendrocytes, which were then exposed to propofol (50 µM) for 16 h in the presence or absence of xenon (33%). Differentiation into cells of the neural lineage was confirmed by labelling with cell-specific markers, ß-tubulin for neurons, glial fibrillary acidic protein (GFAP) for astrocytes, and galactocerebroside (GALC) for oligodendrocytes after 5 days of differentiation. The presence and severity of neural damage induced by anesthetic exposures were assessed by several methods, including the TUNEL assay, and immuno-histochemical measurements. Our data demonstrate that prolonged exposure to propofol results in a significant increase in the number of TUNEL-positive cells, indicating increased neural apoptosis. No significant changes were detected in the number of GFAP-positive astrocytes or GALC-positive oligodendrocytes. However, the number of ß-tubulin-positive neurons was substantially reduced in the propofol-exposed cultures. Co-administration of xenon effectively blocked the propofol-induced neuronal damage/loss. No significant effects were observed when xenon was administered alone. The data indicate that prolonged exposure to propofol during development produces elevated levels of neuronal apoptosis in a human neural stem cell-derived model. However, sub-clinical, non-anesthetic concentrations of xenon, when used in combination with propofol, can prevent or ameliorate the toxic effects associated with prolonged anesthetic exposure. This is important as a more complete understanding of the neurotoxic mechanisms associated with a variety of clinically relevant anesthetic combinations becomes available. Protective approaches are critical for developing sound guidance on best practices for the use of these agents in the pediatric setting.


Assuntos
Astrócitos/efeitos dos fármacos , Células-Tronco Neurais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Xenônio/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Propofol/farmacologia
18.
Neurosci Lett ; 703: 86-95, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-30890473

RESUMO

Parkinson's disease (PD) is a progressive motor disease with clinical features emerging due to degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNc), which project to the caudate putamen (CPu) where they release dopamine (DA). The current study investigated whether acetyl-l-carnitine (ALC) could ameliorate the pathology seen in an in vivoin vivo chronic 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine (MPTP)-induced mouse model of PD. Four treatment groups were included: 1) CONTROL receiving probenecid (PROB; 250 mg/kg) only, 2) MPTP (25 mg/kg) + PROB, 3) MPTP + ALC (100 mg/kg), and 4) ALC alone. MPTP-induced losses in tyrosine hydroxylase and DA transporter immunoreactivity in the SNc and CPu were significantly reduced by ALC. HPLC data further suggests that decreases in CPu DA levels produced by MPTP were also attenuated by ALC. Additionally, microglial activation and astrocytic reactivity induced by MPTP were greatly reduced by ALC, indicating protection against neuroinflammation. Glucose transporter-1 and the tight junction proteins occludin and zonula occludins-1 were also protected from MPTP-induced down-regulation by ALC. Together, data suggest that in this model, ALC protects against MPTP-induced damage to endothelial cells and loss of DA neurons in the SNc and CPu, suggesting that ALC therapy may have the potential to slow or ameliorate the progression of PD pathology in a clinical setting.


Assuntos
Acetilcarnitina/uso terapêutico , Células Endoteliais/efeitos dos fármacos , Microglia/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Transtornos Parkinsonianos/tratamento farmacológico , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Células Endoteliais/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/patologia , Masculino , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Microglia/patologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Probenecid , Putamen/efeitos dos fármacos , Putamen/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
19.
Curr Alzheimer Res ; 16(5): 388-395, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30907317

RESUMO

BACKGROUND: Alzheimer's Disease (AD) is the most common type of dementia characterized by amyloid plaques containing Amyloid Beta (Aß) peptides and neurofibrillary tangles containing tau protein. In addition to neuronal loss, Cerebral Amyloid Angiopathy (CAA) commonly occurs in AD. CAA is characterized by Aß deposition in brain microvessels. Recent studies have suggested that exosomes (cell-derived vesicles containing a diverse cargo) may be involved in the pathogenesis of AD. OBJECTIVE: Isolate and characterize brain-derived exosomes from a transgenic mouse model of AD that presents CAA. METHODS: Exosomes were isolated from serum obtained from 13-month-old wild type and AD transgenic female mice using an exosome precipitation solution. Characterization of exosomal proteins was performed by western blots and dot blots. RESULTS: Serum exosomes were increased in transgenic mice compared to wild types as determined by increased levels of the exosome markers flotillin and alix. High levels of neuronal markers were found in exosomes, without any difference any between the 2 groups. Markers for endothelial-derived exosomes were decreased in the transgenic model, while astrocytic-derived exosomes were increased. Exosome characterization showed increased levels of oligomeric Aß and oligomeric and monomeric forms tau on the transgenic animals. Levels of amyloid precursor protein were also increased. In addition, pathological and phosphorylated forms of tau were detected, but no difference was observed between the groups. CONCLUSION: These data suggest that monomeric and oligomeric forms of Aß and tau are secreted into serum via brain exosomes, most likely derived from astrocytes in the transgenic mouse model of AD with CAA. Studies on the implication of this event in the propagation of AD are underway.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Exossomos/metabolismo , Proteínas tau/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
20.
PLoS One ; 14(2): e0210273, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30779732

RESUMO

This work extends the understanding of how toxic exposures to amphetamine (AMPH) adversely affect the immune system and lead to tissue damage. Importantly, it determines which effects of AMPH are and are not due to pronounced hyperthermia. Whole blood messenger RNA (mRNA) and whole blood and serum microRNA (miRNA) transcripts were identified in adult male Sprague-Dawley rats after exposure to toxic AMPH under normothermic conditions, AMPH when it produces pronounced hyperthermia, or environmentally-induced hyperthermia (EIH). mRNA transcripts with large increases in fold-change in treated relative to control rats and very low expression in the control group were a rich source of organ-specific transcripts in blood. When severe hyperthermia was produced by either EIH or AMPH, significant increases in circulating organ-specific transcripts for liver (Alb, Fbg, F2), pancreas (Spink1), bronchi/lungs (F3, Cyp4b1), bone marrow (Np4, RatNP-3b), and kidney (Cesl1, Slc22a8) were observed. Liver damage was suggested also by increased miR-122 levels in the serum. Increases in muscle/heart-enriched transcripts were produced by AMPH even in the absence of hyperthermia. Expression increases in immune-related transcripts, particularly Cd14 and Vcan, indicate that AMPH can activate the innate immune system in the absence of hyperthermia. Most transcripts specific for T-cells decreased 50-70% after AMPH exposure or EIH, with the noted exception of Ccr5 and Chst12. This is probably due to T-cells leaving the circulation and down-regulation of these genes. Transcript changes specific for B-cells or B-lymphoblasts in the AMPH and EIH groups ranged widely from decreasing ≈ 40% (Cd19, Cd180) to increasing 30 to 100% (Tk1, Ahsa1) to increasing ≥500% (Stip1, Ackr3). The marked increases in Ccr2, Ccr5, Pld1, and Ackr3 produced by either AMPH or EIH observed in vivo provide further insight into the initial immune system alterations that result from methamphetamine and AMPH abuse and could modify risk for HIV and other viral infections.


Assuntos
Transtornos Relacionados ao Uso de Anfetaminas/sangue , Anfetamina/administração & dosagem , Febre/sangue , Golpe de Calor/sangue , MicroRNAs/sangue , RNA Mensageiro/sangue , Anfetamina/farmacologia , Animais , Biomarcadores/sangue , Febre/induzido quimicamente , Masculino , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...