Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 383(6689): 1337-1343, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38513024

RESUMO

The introduction of molecularly woven three-dimensional (3D) covalent organic framework (COF) crystals into polymers of varying types invokes different forms of contact between filler and polymer. Whereas the combination of woven COFs with amorphous and brittle polymethyl methacrylate results in surface interactions, the use of the liquid-crystalline polymer polyimide induces the formation of polymer-COF junctions. These junctions are generated by the threading of polymer chains through the pores of the nanocrystals, thus allowing for spatial arrangement of polymer strands. This offers a programmable pathway for unthreading polymer strands under stress and leads to the in situ formation of high-aspect-ratio nanofibrils, which dissipate energy during the fracture. Polymer-COF junctions also strengthen the filler-matrix interfaces and lower the percolation thresholds of the composites, enhancing strength, ductility, and toughness of the composites by adding small amounts (~1 weight %) of woven COF nanocrystals. The ability of the polymer strands to closely interact with the woven framework is highlighted as the main parameter to forming these junctions, thus affecting polymer chain penetration and conformation.

2.
Nature ; 620(7976): 1089-1100, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37433327

RESUMO

There has been considerable recent progress in designing new proteins using deep-learning methods1-9. Despite this progress, a general deep-learning framework for protein design that enables solution of a wide range of design challenges, including de novo binder design and design of higher-order symmetric architectures, has yet to be described. Diffusion models10,11 have had considerable success in image and language generative modelling but limited success when applied to protein modelling, probably due to the complexity of protein backbone geometry and sequence-structure relationships. Here we show that by fine-tuning the RoseTTAFold structure prediction network on protein structure denoising tasks, we obtain a generative model of protein backbones that achieves outstanding performance on unconditional and topology-constrained protein monomer design, protein binder design, symmetric oligomer design, enzyme active site scaffolding and symmetric motif scaffolding for therapeutic and metal-binding protein design. We demonstrate the power and generality of the method, called RoseTTAFold diffusion (RFdiffusion), by experimentally characterizing the structures and functions of hundreds of designed symmetric assemblies, metal-binding proteins and protein binders. The accuracy of RFdiffusion is confirmed by the cryogenic electron microscopy structure of a designed binder in complex with influenza haemagglutinin that is nearly identical to the design model. In a manner analogous to networks that produce images from user-specified inputs, RFdiffusion enables the design of diverse functional proteins from simple molecular specifications.


Assuntos
Aprendizado Profundo , Proteínas , Domínio Catalítico , Microscopia Crioeletrônica , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/ultraestrutura , Ligação Proteica , Proteínas/química , Proteínas/metabolismo , Proteínas/ultraestrutura
3.
Angew Chem Int Ed Engl ; 62(36): e202307674, 2023 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-37439285

RESUMO

Herein, we report the synthesis of a nitrone-linked covalent organic framework, COF-115, by combining N, N', N', N'''-(ethene-1, 1, 2, 2-tetrayltetrakis(benzene-4, 1-diyl))tetrakis(hydroxylamine) and terephthaladehyde via a polycondensation reaction. The formation of the nitrone functionality was confirmed by solid-state 13 C multi cross-polarization magic angle spinning NMR spectroscopy of the 13 C-isotope-labeled COF-115 and Fourier-transform infrared spectroscopy. The permanent porosity of COF-115 was evaluated through low-pressure N2 , CO2 , and H2 sorption experiments. Water vapor and carbon dioxide sorption analysis of COF-115 and the isoreticular imine-linked COF indicated a superior potential of N-oxide-based porous materials for atmospheric water harvesting and CO2 capture applications. Density functional theory calculations provided valuable insights into the difference between the adsorption properties of these COFs. Lastly, photoinduced rearrangement of COF-115 to the associated amide-linked material was successfully demonstrated.

4.
ACS Cent Sci ; 9(3): 551-557, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36968524

RESUMO

A linker extension strategy for generating metal-organic frameworks (MOFs) with superior moisture-capturing properties is presented. Applying this design approach involving experiment and computation results in MOF-LA2-1 {[Al(OH)(PZVDC)], where PZVDC2- is (E)-5-(2-carboxylatovinyl)-1H-pyrazole-3-carboxylate}, which exhibits an approximately 50% water capacity increase compared to the state-of-the-art water-harvesting material MOF-303. The power of this approach is the increase in pore volume while retaining the ability of the MOF to harvest water in arid environments under long-term uptake and release cycling, as well as affording a reduction in regeneration heat and temperature. Density functional theory calculations and Monte Carlo simulations give detailed insight pertaining to framework structure, water interactions within its pores, and the resulting water sorption isotherm.

5.
Angew Chem Int Ed Engl ; 62(16): e202300003, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-36791229

RESUMO

We report a synthetic strategy to link titanium-oxo (Ti-oxo) clusters into metal-organic framework (MOF) glasses with high porosity though the carboxylate linkage. A new series of MOF glasses was synthesized by evaporation of solution containing Ti-oxo clusters Ti16 O16 (OEt)32 , linkers, and m-cresol. The formation of carboxylate linkages between the Ti-oxo clusters and the carboxylate linkers was confirmed by Fourier-transform infrared (FT-IR) spectroscopy. The structural integrity of the Ti-oxo clusters within the glasses was evidenced by both X-ray absorption near edge structure (XANES) and 17 O magic-angle spinning (MAS) NMR. After ligand exchange and activation, the fumarate-linked MOF glass, termed Ti-Fum, showed a N2 Brunauer-Emmett-Teller (BET) surface areas of 923 m2 g-1 , nearly three times as high as the phenolate-linked MOF glass with the highest BET surface area prior to this report.

6.
Nat Protoc ; 18(1): 136-156, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36289405

RESUMO

Metal-organic frameworks (MOFs) are excellent candidates for water harvesting from desert air. MOF-303 (Al(OH)(PZDC), where PZDC is 1-H-pyrazole-3,5-dicarboxylate), a robust and water-stable MOF, is a particularly promising water-harvesting sorbent that can take up water at low relative humidity and release it under mild heating. Accordingly, development of a facile, high-yield synthesis method for its production at scale is highly desirable. Here we report detailed protocols for the green, water-based preparation of MOF-303 on both gram and kilogram scales. Specifically, four synthetic methods (solvothermal, reflux, vessel and microwave), involving different equipment requirements, are presented to guarantee general accessibility. Typically, the solvothermal method takes ~24 h to synthesize MOF-303, while the reflux and vessel methods can reduce the time to 4-8 h. With the microwave-assisted method, the reaction time can be further reduced to just 5 min. In addition, we provide guidance on the characterization of MOF-303, as well as water-harvesting MOFs in general, to ensure high quality of the product in terms of its purity, crystallinity, porosity and water uptake. Furthermore, to address the need for future commercialization of this material, we demonstrate that our protocol can be employed to produce 3.5 kg per batch with a yield of 91%. MOF-303 synthesized at this large scale shows similar crystallinity and water uptake capacity compared to the respective material produced at a small scale. Our synthetic procedure is green and water-based, and can produce the MOF within hours.


Assuntos
Ácidos Carboxílicos , Estruturas Metalorgânicas , Transporte Biológico , Micro-Ondas , Água
7.
J Am Chem Soc ; 144(49): 22669-22675, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36446081

RESUMO

Development of multivariate metal-organic frameworks (MOFs) as derivatives of the state-of-art water-harvesting material MOF-303 {[Al(OH)(PZDC)], where PZDC2- is 1H-pyrazole-3,5-dicarboxylate} was shown to be a powerful tool to generate efficient water sorbents tailored to a given environmental condition. Herein, a new multivariate MOF-303-based water-harvesting framework series from readily available reactants is developed. The resulting MOFs exhibit a larger degree of tunability in the operational relative humidity range (16%), regeneration temperature (14 °C), and desorption enthalpy (5 kJ mol-1) than reported previously. Additionally, a high-yielding (≥90%) and scalable (∼3.5 kg) synthesis is demonstrated in water and with excellent space-time yields, without compromising framework crystallinity, porosity, and water-harvesting performance.


Assuntos
Estruturas Metalorgânicas , Água , Porosidade , Temperatura
8.
ACS Cent Sci ; 8(7): 926-932, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35912353

RESUMO

We report a postsynthetic strategy and its implementation to make covalent organic frameworks (COFs) with irreversible hydrazide linkages. This involved the synthesis of three 2D and 3D hydrazine-linked frameworks and their partial oxidation. The linkage synthesis and functional group transformation-hydrazine and hydrazide-were evidenced by 15N multi-CP-MAS NMR. In addition, the isothermal water uptake profiles of these frameworks were studied, leading to the discovery of one hydrazine-hydrazide-linked COF suitable for water harvesting from air in arid conditions. This COF displayed characteristic S-shaped water sorption profiles, a steep pore-filling step below 18% relative humidity at 25 °C, and a total uptake capacity of 0.45 g g-1. We found that even small changes made on the molecular level can lead to major differences in the water isotherm profiles, therefore pointing to the utility of water sorption analysis as a complementary analytical tool to study linkage transformations.

9.
J Am Chem Soc ; 144(28): 12989-12995, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35786881

RESUMO

We report the first covalent incorporation of reactive aliphatic amine species into covalent organic frameworks (COFs). This was achieved through the crystallization of an imine-linked COF, termed COF-609-Im, followed by conversion of its imine linkage to base-stable tetrahydroquinoline linkage through aza-Diels-Alder cycloaddition, and finally, the covalent incorporation of tris(3-aminopropyl)amine into the framework. The obtained COF-609 exhibits a 1360-fold increase in CO2 uptake capacity compared to the pristine framework and a further 29% enhancement in the presence of humidity. We confirmed the chemistry of framework conversion and corroborated the enhanced CO2 uptake phenomenon with and without humidity through isotope-labeled Fourier transform infrared spectroscopy and solid-state nuclear magnetic resonance spectroscopy. With this study, we established a new synthetic strategy to access a class of chemisorbents characterized by high affinity to CO2 in dilute sources, such as the air.


Assuntos
Estruturas Metalorgânicas , Aminas , Dióxido de Carbono/química , Cristalização , Iminas/química
10.
J Am Chem Soc ; 144(5): 2387-2396, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080872

RESUMO

Metal-organic framework-808 has been functionalized with 11 amino acids (AA) to produce a series of MOF-808-AA structures. The adsorption of CO2 under flue gas conditions revealed that glycine- and dl-lysine-functionalized MOF-808 (MOF-808-Gly and -dl-Lys) have the highest uptake capacities. Enhanced CO2 capture performance in the presence of water was observed and studied by using single-component sorption isotherms, CO2/H2O binary isotherm, and dynamic breakthrough measurements. The key to the favorable performance was uncovered by deciphering the mechanism of CO2 capture in the pores and attributed to the formation of bicarbonate as evidenced by 13C and 15N solid-state nuclear magnetic resonance spectroscopy studies. On the basis of these results, we examined the performance of MOF-808-Gly in simulated coal flue gas conditions and found that it is possible to capture and release CO2 by vacuum swing adsorption. MOF-808-Gly was cycled at least 80 times with full retention of performance. This study significantly advances our understanding of CO2 chemistry in MOFs by revealing how strongly bound amine moieties to the MOF backbone create the chemistry and environment within the pores, leading to the binding and release of CO2 under mild conditions without application of heat.


Assuntos
Aminoácidos/química , Dióxido de Carbono/química , Gases/química , Compostos Organometálicos/química , Umidade , Incineração , Modelos Moleculares , Estrutura Molecular
11.
Science ; 374(6566): 454-459, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34672755

RESUMO

Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability.

12.
Science ; 370(6515)2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33093081

RESUMO

The valency (connectivity) of building units in covalent organic frameworks (COFs) has been primarily 3 and 4, corresponding to triangles and squares or tetrahedrons, respectively. We report a strategy for making COFs with valency 8 (cubes) and "infinity" (rods). The linker 1,4-boronophenylphosphonic acid-designed to have boron and phosphorus as an isoelectronic combination of carbon-group elements-was condensed into a porous, polycubane structure (BP-COF-1) formulated as (-B4P4O12-)(-C6H4-)4 It was characterized by x-ray powder diffraction techniques, which revealed cubes linked with phenyls. The isoreticular forms (BP-COF-2 to 5) were similarly prepared and characterized. Large single crystals of a constitutionally isomeric COF (BP-COF-6), composed of rod units, were also synthesized using the same strategy, thus propelling COF chemistry into a new valency regime.

13.
Nat Nanotechnol ; 15(5): 348-355, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32367078

RESUMO

The advancement of additional methods for freshwater generation is imperative to effectively address the global water shortage crisis. In this regard, extraction of the ubiquitous atmospheric moisture is a powerful strategy allowing for decentralized access to potable water. The energy requirements as well as the temporal and spatial restrictions of this approach can be substantially reduced if an appropriate sorbent is integrated in the atmospheric water generator. Recently, metal-organic frameworks (MOFs) have been successfully employed as sorbents to harvest water from air, making atmospheric water generation viable even in desert environments. Herein, the latest progress in the development of MOFs capable of extracting water from air and the design of atmospheric water harvesters deploying such MOFs are reviewed. Furthermore, future directions for this emerging field, encompassing both material and device improvements, are outlined.


Assuntos
Atmosfera/química , Umidade , Estruturas Metalorgânicas/química , Abastecimento de Água , Água/química , Adsorção , Modelos Moleculares
14.
J Am Chem Soc ; 142(5): 2218-2221, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31944678

RESUMO

Atmospheric moisture is a ubiquitous water resource available at any time and any place, making it attractive to develop materials for harvesting water from air to address the imminent water shortage crisis. In this context, we have been exploring the applicability of covalent organic frameworks (COFs) for water harvesting and report here a new porous, two-dimensional imine-linked COF with a voided square grid topology, termed COF-432. Unlike other reported COFs, COF-432 meets the requirements desired for water harvesting from air in that it exhibits an S-shaped water sorption isotherm with a steep pore-filling step at low relative humidity and without hysteretic behavior-properties essential for energy-efficient uptake and release of water. Further, it can be regenerated at ultra-low temperatures and displays exceptional hydrolytic stability, as demonstrated by the retention of its working capacity after 300 water adsorption-desorption cycles.


Assuntos
Compostos Orgânicos/química , Porosidade , Adsorção , Análise Espectral/métodos , Termodinâmica
15.
J Am Chem Soc ; 141(43): 17081-17085, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31613614

RESUMO

The synthesis of a new anionic 3D metal-catecholate framework, termed MOF-1992, is achieved by linking tetratopic cobalt phthalocyanin-2,3,9,10,16,17,23,24-octaol linkers with Fe3(-C2O2-)6(OH2)2 trimers into an extended framework of roc topology. MOF-1992 exhibits sterically accessible Co active sites together with charge transfer properties. Cathodes based on MOF-1992 and carbon black (CB) display a high coverage of electroactive sites (270 nmol cm-2) and a high current density (-16.5 mA cm-2; overpotential, -0.52 V) for the CO2 to CO reduction reaction in water (faradaic efficiency, 80%). Over the 6 h experiment, MOF-1992/CB cathodes reach turnover numbers of 5800 with turnover frequencies of 0.20 s-1 per active site.

16.
ACS Cent Sci ; 5(10): 1699-1706, 2019 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-31660438

RESUMO

Sorbent-assisted water harvesting from air represents an attractive way to address water scarcity in arid climates. Hitherto, sorbents developed for this technology have exclusively been designed to perform one water harvesting cycle (WHC) per day, but the productivities attained with this approach cannot reasonably meet the rising demand for drinking water. This work shows that a microporous aluminum-based metal-organic framework, MOF-303, can perform an adsorption-desorption cycle within minutes under a mild temperature swing, which opens the way for high-productivity water harvesting through rapid, continuous WHCs. Additionally, the favorable dynamic water sorption properties of MOF-303 allow it to outperform other commercial sorbents displaying excellent steady-state characteristics under similar experimental conditions. Finally, these findings are implemented in a new water harvester capable of generating 1.3 L kgMOF -1 day-1 in an indoor arid environment (32% relative humidity, 27 °C) and 0.7 L kgMOF -1 day-1 in the Mojave Desert (in conditions as extreme as 10% RH, 27 °C), representing an improvement by 1 order of magnitude over previously reported devices. This study demonstrates that creating sorbents capable of rapid water sorption dynamics, rather than merely focusing on high water capacities, is crucial to reach water production on a scale matching human consumption.

17.
J Chem Phys ; 149(16): 163311, 2018 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-30384733

RESUMO

Double-stranded DNA translocates through sufficiently large nanopores either in a linear single-file fashion or in a folded hairpin conformation when captured somewhere along its length. We show that the folding state of DNA can be controlled by changing the electrolyte concentration, pH, and polyethylene glycol content of the measurement buffer. At pH 8 in 1M LiCl or 0.35M KCl, single-file translocations make up more than 90% of the total. We attribute the effect to the onset of electro-osmotic flow from the pore at low ionic strength. Our hypothesis on the critical role of flows is supported by the preferred orientation of entry of a strand that has been folded into a multi-helix structure at one end. Control over DNA folding is critical for nanopore sensing approaches that use modifications along a DNA strand and the associated secondary current drops to encode information.


Assuntos
DNA/química , Técnicas Eletroquímicas , Nanoporos , Translocação Genética/genética , Conformação de Ácido Nucleico , Osmose , Fenômenos Físicos , Cloreto de Sódio/química
18.
J Am Chem Soc ; 140(48): 16438-16441, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30431266

RESUMO

2D covalent organic frameworks (COFs) with flexible urea linkages have been synthesized by condensation of 1,3,5-triformylphloroglucinol (TFP) with 1,4-phenylenediurea (BDU) or 1,1'-(3,3'-dimethyl-[1,1'-biphenyl]-4,4'-diyl)diurea (DMBDU). The resulting COF-117 and COF-118 undergo reversible structural dynamics within their layers, in response to inclusion and removal of guest molecules, emanating from urea C-N bond rotation and interlayer hydrogen-bonding interactions. These compounds are the first urea-linked COFs, serving to expand the scope of reticular chemistry.

19.
Sci Adv ; 4(10): eaat9180, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30310868

RESUMO

The secondary building unit (SBU) approach was a turning point in the discovery of permanently porous metal-organic frameworks (MOFs) and in launching the field of reticular chemistry. In contrast to the single-metal nodes known in coordination networks, the polynuclear nature of SBUs allows these structures to serve as rigid, directional, and stable building units in the design of robust crystalline materials with predetermined structures and properties. This concept has also enabled the development of MOFs with ultra-high porosity and structural complexity. The architectural, mechanical, and chemical stability of MOFs imparted by their SBUs also gives rise to unique framework chemistry. All of this chemistry -including ligand, linker, metal exchange, and metallation reactions, as well as precisely controlled formation of ordered vacancies- is carried out with full retention of the MOF structure, crystallinity, and porosity. The unique chemical nature of SBUs makes MOFs useful in many applications including gas and vapor adsorption, separation processes, and SBU-mediated catalysis. In essence, the SBU approach realizes a long-standing dream of scientists by bringing molecular chemistry (both organic and inorganic) to extended solid-state structures. This contribution highlights the importance of the SBUs in the development of MOFs and points to the tremendous potential still to be harnessed.

20.
Nature ; 552(7683): 72-77, 2017 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-29219968

RESUMO

Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair 'voxels' that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can be produced within this molecular canvas, enabling the creation of shapes such as letters, a helicoid and a teddy bear. We anticipate that with further optimization of structure design, strand synthesis and assembly procedure even larger structures could be accessible, which could be useful for applications such as positioning functional components.


Assuntos
Algoritmos , DNA/química , DNA/síntese química , Nanoestruturas/química , Nanotecnologia , Conformação de Ácido Nucleico , Animais , Tomografia com Microscopia Eletrônica , Imageamento Tridimensional , Nucleotídeos/química , Rotação , Análise de Sequência de DNA , Ursidae
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...