Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36836997

RESUMO

Low-nickel austenitic steel is subjected to high-pressure torsion fatigue (HPTF) loading, where a constant axial compression is overlaid with a cyclic torsion. The focus of this work lies on investigating whether isotropic J2 plasticity or crystal plasticity can describe the mechanical behavior during HPTF loading, particularly focusing on the axial creep deformation seen in the experiment. The results indicate that a J2 plasticity model with an associated flow rule fails to describe the axial creep behavior. In contrast, a micromechanical model based on an empirical crystal plasticity law with kinematic hardening described by the Ohno-Wang rule can match the HPTF experiments quite accurately. Hence, our results confirm the versatility of crystal plasticity in combination with microstructural models to describe the mechanical behavior of materials under reversing multiaxial loading situations.

2.
Ultrason Sonochem ; 92: 106272, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36566520

RESUMO

We quantitatively study cavitation damage non-invasively, in-place and time-resolved at microsecond resolution. A single, laser-induced bubble is generated in an aqueous NaCl solution close to the surface of an aluminum sample. High-speed chronoamperometry is used to record the corrosion current flowing between the sample and an identical aluminum electrode immersed in the same solution. This configuration makes it possible to measure the cavitation damage in the nanometer thin passive layer of the aluminum surface via the corrosion current from the repassivation. Synchronously with the corrosion current, the bubble dynamics is recorded via high-speed imaging. Correlation between the two measurements allows contributing cavitation damage to the respective stages of the bubble dynamics. The largest cavitation-induced currents were observed for the smallest initial bubble-to-surface stand-off distances. As the bubble re-expands and collapses again in several stages, further current peaks were detected implying a sequence of smaller damage. At intermediate stand-offs the bubble was not damaging and at large stand-off distances, the bubble was only damaging during the second collapse which again occurs at the solid surface.


Assuntos
Alumínio , Corrosão
3.
Materials (Basel) ; 15(7)2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35407692

RESUMO

Understanding the acting wear mechanisms in many cases is key to predicting lifetime, developing models describing component behavior, or for the improvement of the performance of components under tribological loading. Conventionally scanning electron microscopy (SEM) and sometimes additional analytical techniques are performed in order to analyze wear appearances, i.e., grooves, pittings, surface films, and others. In addition, experience is required in order to draw the correct and relevant conclusions on the acting damage and wear mechanisms from the obtained analytical data. Until now, different types of wear mechanisms are classified by experts examining the damage patterns manually. In addition to this approach based on expert knowledge, the use of artificial intelligence (AI) represents a promising alternative. Here, no expert knowledge is required, instead, the classification is done by a purely data-driven model. In this contribution, artificial neural networks are used to classify the wear mechanisms based on SEM images. In order to obtain optimal performance of the artificial neural network, a hyperparameter optimization is performed in addition. The content of this contribution is the investigation of the feasibility of an AI-based model for the automated classification of wear mechanisms.

4.
Materials (Basel) ; 15(5)2022 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-35268869

RESUMO

In this work, Al alloys with 6.6%, 10.4%, and 14.6% Si were deposited as thick coatings by Friction Surfacing (FS), resulting in grain refinement and spheroidization of needle-shaped eutectic Si phase. Lubricated sliding wear tests were performed on a pin-on-disc tribometer using Al-Si alloys in as-cast and FS processed states as pins and 42CrMo4 steel discs. The chemical composition of the worn surfaces was analyzed by X-ray photoelectron spectroscopy (XPS). The wear mechanisms were studied by scanning electron microscopy (SEM) and focused ion beam (FIB), and the wear was evaluated by measuring the weight loss of the samples. For the hypoeutectic alloys, spheroidization of the Si phase particles in particular leads to a significant improvement in wear resistance. The needle-shaped Si phase in as-cast state fractures during the wear test and small fragments easily detach from the surface. The spherical Si phase particles in the FS state also break away from the surface, but to a smaller extent. No reduction in wear due to FS was observed for the hypereutectic alloy. Here, large bulky primary Si phase particles are already present in the as-cast state and do not change significantly during FS, providing high wear resistance in both material states. This study highlights the mechanisms and limitations of improved wear resistance of Si-rich Al alloys deposited as thick coatings by Friction Surfacing.

5.
J Med Chem ; 63(11): 5723-5733, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32374603

RESUMO

The serine protease kallikrein-related peptidase 7 (KLK7) is a member of the human tissue kallikreins. Its dysregulation leads to pathophysiological inflammatory processes in the skin. Furthermore, it plays a role in several types of cancer. For the treatment of KLK7-associated diseases, coumarinic esters have been developed as small-molecule enzyme inhibitors. To characterize the inhibition mode of these inhibitors, we analyzed structures of the inhibited protease by X-ray crystallography. Electron density shows the inhibitors covalently attached to His57 of the catalytic triad. This confirms the irreversible character of the inhibition process. Upon inhibitor binding, His57 undergoes an outward rotation; thus, the catalytic triad of the protease is disrupted. Besides, the halophenyl moiety of the inhibitor was absent in the final enzyme-inhibitor complex due to the hydrolysis of the ester linkage. With these results, we analyze the structural basis of KLK7 inhibition by the covalent attachment of aromatic coumarinic esters.


Assuntos
Cumarínicos/química , Calicreínas/antagonistas & inibidores , Inibidores de Proteases/química , Sítios de Ligação , Domínio Catalítico , Cumarínicos/metabolismo , Cristalografia por Raios X , Ésteres/química , Humanos , Calicreínas/genética , Calicreínas/metabolismo , Simulação de Dinâmica Molecular , Inibidores de Proteases/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espectrometria de Massas em Tandem
6.
Molecules ; 25(8)2020 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-32344508

RESUMO

Visceral adipose tissue derived serine protease inhibitor (vaspin) is a member of the serpin family and has been shown to have beneficial effects on glucose tolerance, insulin stability as well as adipose tissue inflammation, parameters seriously affected by obesity. Some of these effects require inhibition of target proteases such as kallikrein 7(KLK7) and many studies have demonstrated vaspin-mediated activation of intracellular signaling cascades in various cells and tissues. So far, little is known about the exact mechanism how vaspin may trigger these intracellular signaling events. In this study, we investigated and characterized the interaction of vaspin with membrane lipids and polyphosphates as well as their potential regulatory effects on serpin activity using recombinant vaspin and KLK7 proteins and functional protein variants thereof. Here, we show for the first time that vaspin binds to phospholipids and polyphosphates with varying effects on KLK7 inhibition. Vaspin binds strongly to monophosphorylated phosphatidylinositol phosphates (PtdInsP) with no effect on vaspin activation. Microscale thermophoresis (MST) measurements revealed high-affinity binding to polyphosphate 45 (KD: 466 ± 75 nM) and activation of vaspin in a heparin-like manner. Furthermore, we identified additional residues in the heparin binding site in ß-sheet A by mutating five basic residues resulting in complete loss of high-affinity heparin binding. Finally, using lipid overlay assays, we show that these residues are additionally involved in PtdInsP binding. Phospholipids play a major role in membrane trafficking and signaling whereas polyphosphates are procoagulant and proinflammatory agents. The identification of phospholipids and polyphosphates as binding partners of vaspin will contribute to the understanding of vaspins involvement in membrane trafficking, signaling and beneficial effects associated with obesity.


Assuntos
Lipídeos de Membrana/metabolismo , Fosfolipídeos/metabolismo , Polifosfatos/metabolismo , Serpinas/metabolismo , Sítios de Ligação , Heparina/química , Heparina/metabolismo , Humanos , Cinética , Lipídeos de Membrana/química , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Fosfolipídeos/química , Polifosfatos/química , Ligação Proteica , Serpinas/química , Relação Estrutura-Atividade
7.
Ultrason Sonochem ; 58: 104628, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450300

RESUMO

An alloy that is exposed to cavitation may experience mechanical cavitation damages as well as accelerated corrosion. In the present paper, the evolution of corrosion erosion behavior of brass samples (CuZn38Pb3) during continuous exposure to ultrasonic cavitation in a salt solution (NaCl) was investigated. Various samples were sonicated for times between 0 min and 5 h. The average surface roughness and the effective surface area of the samples were measured by confocal microscopy, and the surfaces were inspected by scanning electron microscopy. Different erosion behavior of the phases present on the surface is discussed. Complementary to the surface inspection, the corrosion behavior of the samples before, during and after sonication was investigated through open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy techniques. The results show that at the initial times of sonication preferably the lead islets were removed from the brass surface, resulting in a change in the open circuit potential. α and ß' phases showed ductile and brittle behavior under sonication, respectively. The corrosion rate of the alloy under cavitation increased as the sonication time increased, mainly related to the increase in effective surface area and the rise of plastic deformation of the surface material.

8.
Materials (Basel) ; 12(11)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159157

RESUMO

In order to capture the stress-strain response of metallic materials under cyclic loading, it is necessary to consider the cyclic hardening behaviour in the constitutive model. Among different cyclic hardening approaches available in the literature, the Chaboche model proves to be very efficient and convenient to model the kinematic hardening and ratcheting behaviour of materials observed during cyclic loading. The purpose of this study is to determine the material parameters of the Chaboche kinematic hardening material model by using isotropic J2 plasticity and micromechanical crystal plasticity (CP) models as constitutive rules in finite element modelling. As model material, we chose a martensitic steel with a very fine microstructure. Thus, it is possible to compare the quality of description between the simpler J2 plasticity and more complex micromechanical material models. The quality of the results is rated based on the quantitative comparison between experimental and numerical stress-strain hysteresis curves for a rather wide range of loading amplitudes. It is seen that the ratcheting effect is captured well by both approaches. Furthermore, the results show that concerning macroscopic properties, J2 plasticity and CP are equally suited to describe cyclic plasticity. However, J2 plasticity is computationally less expensive whereas CP finite element analysis provides insight into local stresses and plastic strains on the microstructural length scale. With this study, we show that a consistent material description on the microstructural and the macroscopic scale is possible, which will enable future scale-bridging applications, by combining both constitutive rules within one single finite element model.

9.
Biol Chem ; 399(9): 1079-1084, 2018 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-29494334

RESUMO

Kallikrein-related peptidases KLK5, KLK7 and KLK14 are important proteases in skin desquamation and aberrant KLK activity is associated with inflammatory skin diseases such as Netherton syndrome but also with various serious forms of cancer. Previously, we have identified KLK7 as the first protease target of vaspin (Serpin A12). Here, we report KLK14 as a second KLK protease to be inhibited by vaspin. In conclusion, vaspin represents a multi-specific serpin targeting the kallikrein proteases KLK7 and KLK14, with distinct exosites regulating recognition of these target proteases and opposing effects of heparin binding on the inhibition reaction.


Assuntos
Calicreínas/antagonistas & inibidores , Serpinas/metabolismo , Humanos , Calicreínas/metabolismo , Síndrome de Netherton/metabolismo
10.
Biochim Biophys Acta Proteins Proteom ; 1865(9): 1188-1194, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28668641

RESUMO

Vaspin is a glycoprotein with three predicted glycosylation sites at asparagine residues located in proximity to the reactive center loop and close to domains that play important roles in conformational changes underlying serpin function. In this study, we have investigated the glycosylation of human vaspin and its effects on biochemical properties relevant to vaspin function. We show that vaspin is modified at all three sites and biochemical data demonstrate that glycosylation does not hinder inhibition of the target protease kallikrein 7. Although binding affinity to heparin is slightly decreased, the protease inhibition reaction is still significantly accelerated in the presence of heparin. Glycosylation did not affect thermal stability.


Assuntos
Serpinas/química , Asparagina/metabolismo , Glicosilação , Células HEK293 , Heparina/metabolismo , Humanos , Calicreínas/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Recombinantes/metabolismo , Serpinas/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...