Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Sci Rep ; 14(1): 8679, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622223

RESUMO

Roots are crucial in plant adaptation through the exudation of various compounds which are influenced and modified by environmental factors. Buckwheat root exudate and root system response to neighbouring plants (buckwheat or redroot pigweed) and how these exudates affect redroot pigweed was investigated. Characterising root exudates in plant-plant interactions presents challenges, therefore a split-root system which enabled the application of differential treatments to parts of a single root system and non-destructive sampling was developed. Non-targeted metabolome profiling revealed that neighbour presence and identity induces systemic changes. Buckwheat and redroot pigweed neighbour presence upregulated 64 and 46 metabolites, respectively, with an overlap of only 7 metabolites. Root morphology analysis showed that, while the presence of redroot pigweed decreased the number of root tips in buckwheat, buckwheat decreased total root length and volume, surface area, number of root tips, and forks of redroot pigweed. Treatment with exudates (from the roots of buckwheat and redroot pigweed closely interacting) on redroot pigweed decreased the total root length and number of forks of redroot pigweed seedlings when compared to controls. These findings provide understanding of how plants modify their root exudate composition in the presence of neighbours and how this impacts each other's root systems.


Assuntos
Amaranthus , Produtos Biológicos , Fagopyrum , Metaboloma , Meristema , Plântula , Produtos Biológicos/metabolismo , Raízes de Plantas/metabolismo
2.
Microb Cell Fact ; 23(1): 43, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331812

RESUMO

BACKGROUND: Specific productivity (qP) in yeast correlates with growth, typically peaking at intermediate or maximum specific growth rates (µ). Understanding the factors limiting productivity at extremely low µ might reveal decoupling strategies, but knowledge of production dynamics and physiology in such conditions is scarce. Retentostats, a type of continuous cultivation, enable the well-controlled transition to near-zero µ through the combined retention of biomass and limited substrate supply. Recombinant Komagataella phaffii (syn Pichia pastoris) secreting a bivalent single domain antibody (VHH) was cultivated in aerobic, glucose-limited retentostats to investigate recombinant protein production dynamics and broaden our understanding of relevant physiological adaptations at near-zero growth conditions. RESULTS: By the end of the retentostat cultivation, doubling times of approx. two months were reached, corresponding to µ = 0.00047 h-1. Despite these extremely slow growth rates, the proportion of viable cells remained high, and de novo synthesis and secretion of the VHH were observed. The average qP at the end of the retentostat was estimated at 0.019 mg g-1 h-1. Transcriptomics indicated that genes involved in protein biosynthesis were only moderately downregulated towards zero growth, while secretory pathway genes were mostly regulated in a manner seemingly detrimental to protein secretion. Adaptation to near-zero growth conditions of recombinant K. phaffii resulted in significant changes in the total protein, RNA, DNA and lipid content, and lipidomics revealed a complex adaptation pattern regarding the lipid class composition. The higher abundance of storage lipids as well as storage carbohydrates indicates that the cells are preparing for long-term survival. CONCLUSIONS: In conclusion, retentostat cultivation proved to be a valuable tool to identify potential engineering targets to decouple growth and protein production and gain important insights into the physiological adaptation of K. phaffii to near-zero growth conditions.


Assuntos
Saccharomycetales , Saccharomycetales/genética , Saccharomycetales/metabolismo , Saccharomyces cerevisiae/metabolismo , Perfilação da Expressão Gênica , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Lipídeos
3.
Microlife ; 5: uqad046, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38234447

RESUMO

Synthetic autotrophs can serve as chassis strains for bioproduction from CO2 as a feedstock to take measures against the climate crisis. Integration of the Calvin-Benson-Bassham (CBB) cycle into the methylotrophic yeast Komagataella phaffii (Pichia pastoris) enabled it to use CO2 as the sole carbon source. The key enzyme in this cycle is ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) catalyzing the carboxylation step. However, this enzyme is error prone to perform an oxygenation reaction leading to the production of toxic 2-phosphoglycolate. Native autotrophs have evolved different recycling pathways for 2-phosphoglycolate. However, for synthetic autotrophs, no information is available for the existence of such pathways. Deletion of CYB2 in the autotrophic K. phaffii strain led to the accumulation of glycolate, an intermediate in phosphoglycolate salvage pathways, suggesting that such a pathway is enabled by native K. phaffii enzymes. 13C tracer analysis with labeled glycolate indicated that the yeast pathway recycling phosphoglycolate is similar to the plant salvage pathway. This orthogonal yeast pathway may serve as a sensor for RuBisCO oxygenation, and as an engineering target to boost autotrophic growth rates in K. phaffii.

4.
Plant Sci ; 339: 111919, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992897

RESUMO

Efficient micronutrient acquisition is a critical factor in selecting micronutrient dense crops for human consumption. Enhanced exudation and re-uptake of metal chelators, so-called phytosiderophores, by roots of graminaceous plants has been implicated in efficient micronutrient acquisition. We compared PS biosynthesis and exudation as a response mechanism to either Fe, Zn or Cu starvation. Two barley (Hordeum vulgare L.) lines with contrasting micronutrient grain yields were grown hydroponically and PS exudation (LC-MS) and root gene expression (RNAseq) were determined after either Fe, Zn, or Cu starvation. The response strength of the PS pathway was micronutrient dependent and decreased in the order Fe > Zn > Cu deficiency. We observed a stronger expression of PS pathway genes and greater PS exudation in the barley line with large micronutrient grain yield suggesting that a highly expressed PS pathway might be an important trait involved in high micronutrient accumulation. In addition to several metal specific transporters, we also found that the expression of IRO2 and bHLH156 transcription factors was not only induced under Fe but also under Zn and Cu deficiency. Our study delivers important insights into the role of the PS pathway in the acquisition of different micronutrients.


Assuntos
Hordeum , Ferro , Humanos , Ferro/metabolismo , Zinco/metabolismo , Hordeum/genética , Hordeum/metabolismo , Cobre/metabolismo , Micronutrientes/metabolismo , Raízes de Plantas/metabolismo
5.
Plant Sci ; 338: 111896, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37838155

RESUMO

Deciphering root exudate composition of soil-grown plants is considered a crucial step to better understand plant-soil-microbe interactions affecting plant growth performance. In this study, two genotypes of Zea mays L. (WT, rth3) differing in root hair elongation were grown in the field in two substrates (sand, loam) in custom-made, perforated columns inserted into the field plots. Root exudates were collected at different plant developmental stages (BBCH 14, 19, 59, 83) using a soil-hydroponic-hybrid exudation sampling approach. Exudates were characterized by LC-MS based non-targeted metabolomics, as well as by photometric assays targeting total dissolved organic carbon, soluble carbohydrates, proteins, amino acids, and phenolics. Results showed that plant developmental stage was the main driver shaping both the composition and quantity of exuded compounds. Carbon (C) exudation per plant increased with increasing biomass production over time, while C exudation rate per cm² root surface area h-1 decreased with plant maturity. Furthermore, exudation rates were higher in the substrate with lower nutrient mobility (i.e., loam). Surprisingly, we observed higher exudation rates in the root hairless rth3 mutant compared to the root hair-forming WT sibling, though exudate metabolite composition remained similar. Our results highlight the impact of plant developmental stage on the plant-soil-microbe interplay.


Assuntos
Metabolômica , Zea mays , Zea mays/metabolismo , Genótipo , Carbono/metabolismo , Solo/química , Raízes de Plantas/metabolismo
6.
Nat Commun ; 14(1): 7754, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012236

RESUMO

The current climatic change is predominantly driven by excessive anthropogenic CO2 emissions. As industrial bioprocesses primarily depend on food-competing organic feedstocks or fossil raw materials, CO2 co-assimilation or the use of CO2-derived methanol or formate as carbon sources are considered pathbreaking contributions to solving this global problem. The number of industrially-relevant microorganisms that can use these two carbon sources is limited, and even fewer can concurrently co-assimilate CO2. Here, we search for alternative native methanol and formate assimilation pathways that co-assimilate CO2 in the industrially-relevant methylotrophic yeast Komagataella phaffii (Pichia pastoris). Using 13C-tracer-based metabolomic techniques and metabolic engineering approaches, we discover and confirm a growth supporting pathway based on native enzymes that can perform all three assimilations: namely, the oxygen-tolerant reductive glycine pathway. This finding paves the way towards metabolic engineering of formate and CO2 utilisation to produce proteins, biomass, or chemicals in yeast.


Assuntos
Dióxido de Carbono , Metanol , Metanol/metabolismo , Dióxido de Carbono/metabolismo , Glicina/metabolismo , Carbono/metabolismo , Formiatos/metabolismo , Oxigênio/metabolismo , Pichia/metabolismo
7.
Biotechnol J ; 18(12): e2300033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37668396

RESUMO

Amino acids are the building blocks of proteins. In this respect, a reciprocal effect of recombinant protein production on amino acid biosynthesis as well as the impact of the availability of free amino acids on protein production can be anticipated. In this study, the impact of engineering the amino acid metabolism on the production of recombinant proteins was investigated in the yeast Pichia pastoris (syn Komagataella phaffii). Based on comprehensive systems-level analyses of the metabolomes and transcriptomes of different P. pastoris strains secreting antibody fragments, cell engineering targets were selected. Our working hypothesis that increasing intracellular amino acid levels could help unburden cellular metabolism and improve recombinant protein production was examined by constitutive overexpression of genes related to amino acid metabolism. In addition to 12 genes involved in specific amino acid biosynthetic pathways, the transcription factor GCN4 responsible for regulation of amino acid biosynthetic genes was overexpressed. The production of the used model protein, a secreted carboxylesterase (CES) from Sphingopyxis macrogoltabida, was increased by overexpression of pathway genes for alanine and for aromatic amino acids, and most pronounced, when overexpressing the regulator GCN4. The analysis of intracellular amino acid levels of selected clones indicated a direct linkage of improved recombinant protein production to the increased availability of intracellular amino acids. Finally, fed batch cultures showed that overexpression of GCN4 increased CES titers 2.6-fold, while the positive effect of other amino acid synthesis genes could not be transferred from screening to bioreactor cultures.


Assuntos
Reatores Biológicos , Pichia , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Aminoácidos/metabolismo
8.
Anal Chim Acta ; 1278: 341718, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37709429

RESUMO

Phytosiderophores (PS) are root exudates released by grass species (Poaceae) that play a pivotal role in iron (Fe) plant nutrition. A direct determination of PS in biological samples is of paramount importance in understanding micronutrient acquisition mediated by PS. To date, eight plant-born PS have been identified; however, no analytical procedure is currently available to quantify all eight PS simultaneously with high analytical confidence. With access to the full set of PS standards for the first time, we report comprehensive methods to both fully characterize (IM-QTOFMS) and quantify (LC-ESI-MS/MS) all eight naturally occurring PS belonging to the mugineic acid family. The quantitative method was fully validated, yielding linear results for all eight analytes, and no unwanted interferences with soil and plant matrices were observed. LOD and LOQ values determined for each PS were below 11 and 35 nmol L-1, respectively. The method's precision under reproducibility conditions (intra- and inter-day) of measurement was less than 2.5% RSD for all analytes. Additionally, all PS were annotated with high-resolution mass spectrometric fragment spectra and further characterized via drift tube ion mobility-mass spectrometry. The collision cross-sections obtained for primary ion species yielded a valuable database for future research focused on in-depth PS studies. The new quantitative method was applied to analyse root exudates from Fe-controlled and deficient barley, oat, rye, and sorghum plants. All eight PS, including mugineic acid (MA), 3"-hydroxymugineic acid (HMA), 3"-epi-hydroxymugineic acid (epi-HMA), hydroxyavenic acid (HAVA), deoxymugineic acid (DMA), 3"-hydroxydeoxymugineic acid (HDMA), 3"-epi-hydroxydeoxymugineic acid (epi-HDMA) and avenic acid (AVA) were for the first time successfully identified and quantified in root exudates of various graminaceous plants using a single analytical procedure. These newly developed methods can be applied to studies aimed at improving crop yield and micronutrient grain content for food consumption via plant-based biofortification.


Assuntos
Poaceae , Espectrometria de Massas em Tandem , Reprodutibilidade dos Testes , Grão Comestível , Micronutrientes
9.
Food Res Int ; 172: 113123, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689889

RESUMO

Changes of volatile organic compounds (VOCs) patterns during 6 days of storage at +4 °C were investigated in different freshwater fish species, namely carp and trout, using dynamic headspace gas chromatography time-of-flight mass spectrometry (DHS-GC-TOFMS). DHS parameters were systematically optimized to establish optimum extraction and pre-concentration of VOCs. Moreover, different sample preparation methods were tested: mincing with a manual meat grinder, as well as mincing plus homogenization with a handheld homogenizer both without and with water addition. The addition of water during sample preparation led to pronounced changes of the volatile profiles, depending on the molecular structure and lipophilicity of the analytes, resulting in losses of up to 98 % of more lipophilic compounds (logP > 3). The optimized method was applied to trout and carp. Trout samples of different storage days were compared using univariate (Mann-Whitney U test, fold change calculation) and multivariate (OPLS-DA) statistics. 37 potential spoilage markers were selected; for 11 compounds identity could be confirmed via measurement of authentic standards and 10 compounds were identified by library spectrum match. 22 compounds were also found to be statistically significant spoilage markers in carp. Merging results of the different statistical approaches, the list of 37 compounds could be narrowed down to the 14 most suitable for trout spoilage assessment. This study comprises a systematic evaluation of the capabilities of DHS-GC coupled to high-resolution (HR) MS for studying spoilage in different freshwater fish species, including a comprehensive data evaluation workflow.


Assuntos
Carpas , Compostos Orgânicos Voláteis , Animais , Fluxo de Trabalho , Água Doce , Água
10.
Anal Bioanal Chem ; 415(21): 5151-5163, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37347300

RESUMO

Climate change directs the focus in biotechnology increasingly on one-carbon metabolism for fixation of CO2 and CO2-derived chemicals (e.g. methanol, formate) to reduce our reliance on both fossil and food-competing carbon sources. The tetrahydrofolate pathway is involved in several one-carbon fixation pathways. To study such pathways, stable isotope-labelled tracer analysis performed with mass spectrometry is state of the art. However, no such method is currently available for tetrahydrofolate vitamers. In the present work, we established a fit-for-purpose extraction method for the methylotrophic yeast Komagataella phaffii that allows access to intracellular methyl- and methenyl-tetrahydrofolate (THF) with demonstrated stability over several hours. To determine isotopologue distributions of methyl-THF, LC-QTOFMS provides a selective fragment ion with suitable intensity of at least two isotopologues in all samples, but not for methenyl-THF. However, the addition of ion mobility separation provided a critical selectivity improvement allowing accurate isotopologue distribution analysis of methenyl-THF with LC-IM-TOFMS. Application of these new methods for 13C-tracer experiments revealed a decrease from 83 ± 4 to 64 ± 5% in the M + 0 carbon isotopologue fraction in methyl-THF after 1 h of labelling with formate, and to 54 ± 5% with methanol. The M + 0 carbon isotopologue fraction of methenyl-THF was reduced from 83 ± 2 to 78 ± 1% over the same time when using 13C-methanol labelling. The labelling results of multiple strains evidenced the involvement of the THF pathway in the oxygen-tolerant reductive glycine pathway, the presence of the in vivo reduction of formate to formaldehyde, and the activity of the spontaneous condensation reaction of formaldehyde with THF in K. phaffii.


Assuntos
Dióxido de Carbono , Metanol , Carbono/metabolismo , Tetra-Hidrofolatos/metabolismo , Espectrometria de Massas , Formiatos
11.
Chemosphere ; 317: 137852, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36669539

RESUMO

The growing global demand for drinking water is driving both the diversification of water supply sources and their sustainability. River bank filtration (RBF) is an excellent option since it strongly reduces the extent of treatment steps compared to direct usage of surface water. Organic micropollutants (e.g. pharmaceuticals) are widely recognized as a hazard in drinking water production from surface water. Due to their potentially high mobility, stability, bioaccumulation and persistency, these substances can pass through RBF-systems. Scientific studies on compound removal and attenuation efficiency of RBF rely on the knowledge of travel time to compare concentrations in the river to the ones in the bank filtrate since water quality in rivers can change rapidly. However, bank filtrate samples represent a mixture of water with different travel times as the flow paths vary. This has not yet been considered in studies of bank filtration removal efficiency for organic micro pollutants. Here we present a method that considers the residence-time distribution of the bank filtrate sample obtained by groundwater modelling to evaluate the removal efficiency of RBF for organic micropollutants. The method was tested in a comprehensive study with 50 samples taken over a one-year-period at a river bank filtration site in Vienna (Austria). Our findings revealed that better coverage of varying river water quality (higher sampling frequency during the period of infiltration) resulted not only in a higher number of compounds considered as removed but also significantly reduced the number of compounds considered to have formed during the RBF process. The application of the presented method indicated that RBF is very effective in removing organic micropollutants. Considering different travel times will provide better models and a better understanding of the potential of RBF for pollutant removal and thus supports its safe application as a solution to the growing demand for drinking water.


Assuntos
Água Potável , Poluentes Ambientais , Água Subterrânea , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Abastecimento de Água , Qualidade da Água , Rios , Filtração/métodos , Compostos Orgânicos
12.
Anal Bioanal Chem ; 415(5): 823-840, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36547703

RESUMO

Root exudation is a major pathway of organic carbon input into soils. It affects soil physical properties, element solubility as well as speciation, and impacts the microbial community in the rhizosphere. Root exudates contain a large number of primary and secondary plant metabolites, and the amount and composition are highly variable depending on plant species and developmental stage. Detailed information about exudate composition will allow for a better understanding of exudate-driven rhizosphere processes and their feedback loops. Although non-targeted metabolomics by high-resolution mass spectrometry is an established tool to characterize root exudate composition, the extent and depth of the information obtained depends strongly on the analytical approach applied. Here, two genotypes of Zea mays L., differing in root hair development, were used to compare six mass spectrometric approaches for the analysis of root exudates. Reversed-phase liquid chromatography and hydrophilic interaction liquid chromatography combined with time-of-flight mass spectrometry (LC-TOF-MS), as well as direct infusion Fourier-transform ion cyclotron resonance mass spectrometry (DI-FT-ICR-MS), were applied with positive and negative ionization mode. By using the same statistical workflow, the six approaches resulted in different numbers of detected molecular features, ranging from 176 to 889, with a fraction of 48 to 69% of significant features (fold change between the two genotypes of > 2 and p-value < 0.05). All approaches revealed the same trend between genotypes, namely up-regulation of most metabolites in the root hair defective mutant (rth3). These results were in agreement with the higher total carbon and nitrogen exudation rate of the rth3-mutant as compared to the corresponding wild-type maize (WT). However, only a small fraction of features were commonly found across the different analytical approaches (20-79 features, 13-31% of the rth3-mutant up-regulated molecular formulas), highlighting the need for different mass spectrometric approaches to obtain a more comprehensive view into the composition of root exudates. In summary, 111 rth3-mutant up-regulated compounds (92 different molecular formulas) were detected with at least two different analytical approaches, while no WT up-regulated compound was found by both, LC-TOF-MS and DI-FT-ICR-MS. Zea mays L. exudate features obtained with multiple analytical approaches in our study were matched against the metabolome database of Zea mays L. (KEGG) and revealed 49 putative metabolites based on their molecular formula.


Assuntos
Metaboloma , Metabolômica , Metabolômica/métodos , Espectrometria de Massas/métodos , Exsudatos e Transudatos , Carbono/análise , Raízes de Plantas/química
13.
Proc Natl Acad Sci U S A ; 119(47): e2211827119, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36383601

RESUMO

The increase of CO2 emissions due to human activity is one of the preeminent reasons for the present climate crisis. In addition, considering the increasing demand for renewable resources, the upcycling of CO2 as a feedstock gains an extensive importance to establish CO2-neutral or CO2-negative industrial processes independent of agricultural resources. Here we assess whether synthetic autotrophic Komagataella phaffii (Pichia pastoris) can be used as a platform for value-added chemicals using CO2 as a feedstock by integrating the heterologous genes for lactic and itaconic acid synthesis. 13C labeling experiments proved that the resulting strains are able to produce organic acids via the assimilation of CO2 as a sole carbon source. Further engineering attempts to prevent the lactic acid consumption increased the titers to 600 mg L-1, while balancing the expression of key genes and modifying screening conditions led to 2 g L-1 itaconic acid. Bioreactor cultivations suggest that a fine-tuning on CO2 uptake and oxygen demand of the cells is essential to reach a higher productivity. We believe that through further metabolic and process engineering, the resulting engineered strain can become a promising host for the production of value-added bulk chemicals by microbial assimilation of CO2, to support sustainability of industrial bioprocesses.


Assuntos
Engenharia Metabólica , Pichia , Humanos , Pichia/metabolismo , Engenharia Metabólica/métodos , Dióxido de Carbono/metabolismo , Processos Autotróficos
14.
Metallomics ; 14(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36214420

RESUMO

The low solubility of inorganic iron(III) in seawater leads to very limited availability of this important micronutrient for marine organisms. Estuarine or oceanic iron is almost entirely bound to organic ligands of mainly unknown chemical structure. In this context, riverine input of iron rich, land-derived dissolved organic matter (DOM) can play an important role in coastal areas and investigation of potential Fe-ligands in DOM is of high interest. Previous studies have suggested that iron is predominantly bound to the high molecular weight fraction of DOM, but distributed over the entire size range. Logically, structural elucidation needs to start from the smallest building blocks. A model study targeting low molecular weight iron-binding constituents in Suwannee River natural organic matter (NOM) using Fe-loaded Chelex or silica for immobilized-metal affinity (IMAC)-based fractionation was undertaken. The binding strengths of different compounds could be qualitatively assessed using a differential analysis workflow. IMAC-fractionated samples were acidified and analyzed via liquid chromatography high resolution mass spectrometry (LC-HRMS) and molecular formulas were assigned using state of the art software. A total of 144 Fe-binding constituents in Suwannee River NOM were found to be of interest with the largest number observed to interact with Chelex at pH 4 (55%), and the smallest with silica at neutral pH (24%). Most binding constituents were found in the lignin- and tannin-type region of the van Krevelen plot. Results from this study support the hypothesis that very low molecular weight constituents (below 300 Da) can play a role in the iron binding mechanism of DOM and demonstrate that the employed analytical workflow is suitable for their detection.


Assuntos
Matéria Orgânica Dissolvida , Ferro , Ferro/química , Poliestirenos , Polivinil , Metais/química
15.
J Am Soc Mass Spectrom ; 33(10): 1951-1959, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-36047677

RESUMO

Steroids play key roles in various biological processes and are characterized by many isomeric variants, which makes their unambiguous identification challenging. Ion mobility-mass spectrometry (IM-MS) has been proposed as a suitable platform for this application, particularly using collision cross section (CCS) databases obtained from different commercial IM-MS instruments. CCS is seen as an ideal additional identification parameter for steroids as long-term repeatability and interlaboratory reproducibility of this measurand are excellent and matrix effects are negligible. While excellent results were demonstrated for individual IM-MS technologies, a systematic comparison of CCS derived from all major commercial IM-MS technologies has not been performed. To address this gap, a comprehensive interlaboratory comparison of 142 CCS values derived from drift tube (DTIM-MS), traveling wave (TWIM-MS), and trapped ion mobility (TIM-MS) platforms using a set of 87 steroids was undertaken. Besides delivering three instrument-specific CCS databases, systematic comparisons revealed excellent interlaboratory performance for 95% of the ions with CCS biases within ±1% for TIM-MS and within ±2% for TWIM-MS with respect to DTIM-MS values. However, a small fraction of ions (<1.5%) showed larger biases of up to 7% indicating that differences in the ion conformation sampled on different instrument types need to be further investigated. Systematic differences between CCS derived from different IM-MS analyzers and implications on the applicability for nontargeted analysis are critically discussed. To the best of our knowledge, this is the most comprehensive interlaboratory study comparing CCS from three different IM-MS technologies for analysis of steroids and small molecules in general.


Assuntos
Espectrometria de Mobilidade Iônica , Esteroides , Bases de Dados Factuais , Espectrometria de Mobilidade Iônica/métodos , Íons/química , Reprodutibilidade dos Testes
16.
Anal Bioanal Chem ; 414(25): 7483-7493, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35960317

RESUMO

The major benefits of integrating ion mobility (IM) into LC-MS methods for small molecules are the additional separation dimension and especially the use of IM-derived collision cross sections (CCS) as an additional ion-specific identification parameter. Several large CCS databases are now available, but outliers in experimental interplatform IM-MS comparisons are identified as a critical issue for routine use of CCS databases for identity confirmation. We postulate that different routine external calibration strategies applied for traveling wave (TWIM-MS) in comparison to drift tube (DTIM-MS) and trapped ion mobility (TIM-MS) instruments is a critical factor affecting interplatform comparability. In this study, different external calibration approaches for IM-MS were experimentally evaluated for 87 steroids, for which TWCCSN2, DTCCSN2 and TIMCCSN2 are available. New reference CCSN2 values for commercially available and class-specific calibrant sets were established using DTIM-MS and the benefit of using consolidated reference values on comparability of CCSN2 values assessed. Furthermore, use of a new internal correction strategy based on stable isotope labelled (SIL) internal standards was shown to have potential for reducing systematic error in routine methods. After reducing bias for CCSN2 between different platforms using new reference values (95% of TWCCSN2 values fell within 1.29% of DTCCSN2 and 1.12% of TIMCCSN2 values, respectively), remaining outliers could be confidently classified and further studied using DFT calculations and CCSN2 predictions. Despite large uncertainties for in silico CCSN2 predictions, discrepancies in observed CCSN2 values across different IM-MS platforms as well as non-uniform arrival time distributions could be partly rationalized.


Assuntos
Calibragem , Cromatografia Líquida , Espectrometria de Massas/métodos , Padrões de Referência
17.
Environ Sci Pollut Res Int ; 29(43): 64568-64581, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35474425

RESUMO

A fully non-targeted analytical workflow for the investigation of a riverbank filtration site located at the river Danube has been developed and applied. Variations of compound intensities at different sampling locations of the riverbank filtration site and, for a single production well, over a monitoring period of one year have been investigated using liquid chromatography combined with time-of-flight-mass spectrometry followed by evaluation via non-targeted data analysis. Internal standardization and appropriate quality control strategies have been implemented into the workflow for reduction of possible methodological biases influencing data interpretation. Emphasis was placed on the assessment of different blank elimination steps and the final blank elimination strategy is reported. The spatial study of the selected riverbank filtration site revealed a homogenous composition of the filtered water sampled at 11 different locations across the 32,000 m2 site, except for one sampling location in a zone of the aquifer, which was only weakly connected to the well field in terms of hydrogeological conditions. The examination of time-dependent changes of the composition of surface and groundwater obtained at the riverbank filtration system revealed that the non-targeted workflow is fit-for-purpose regarding the assessment the stability of filtration efficiency and compound residence time in the riverbank filtration compartment. In total, 677 compounds were selected for the investigation of the time-dependent variations of the filtration process. Analysis of the signal intensities of these compounds revealed that the riverbank filtration is significantly reducing the intensity and number of compounds present in surface water over a wide polarity range. In addition, the method enabled the determination of compound residence times in the riverbank filtration system ranging from 5 to 7 days.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Filtração/métodos , Água Subterrânea/química , Espectrometria de Massas , Rios/química , Água/análise , Poluentes Químicos da Água/análise
18.
Clin Transl Allergy ; 12(2): e12125, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35169442

RESUMO

BACKGROUND: Growing up on a cattle farm and consuming raw cow's milk protects against asthma and allergies. We expect a cattle-specific protein as active component in this farm effect. METHODS: Dust was collected from cattle and poultry stables and from mattresses of households. Urine was obtained from cattle, and ambient aerosols were sampled. Samples were analysed for BLG by SDS PAGE/immunoblot and mass spectrometry, and for association with metals by SEC-ICP-MS. PBMC of healthy donors were incubated with BLG +/- zinc, and proliferation and cytokines determined. BALB/c mice were pre-treated intranasally with stable dust extract containing BLG or depleted of BLG, and subsequent allergy response after sensitization was evaluated on antibody and symptom level. RESULTS: A major protein in dust from cattle farms and ambient air was identified as BLG. Urine from female and male cattle is a major source of BLG. In dust samples, BLG was associated with zinc. In vitro, zinc-BLG provoked significantly lower proliferation of CD4+ and CD8+ cells while inducing significantly higher levels of IFN-γ and IL-6 than the apo-BLG devoid of zinc. In vivo, pre-treatment of mice with dust extract containing BLG resulted in lower allergy symptom scores to BLG and unrelated Bet v 1 than pre-treatment with extract depleted of BLG. These in vitro and in vivo effects were independent of endotoxin. CONCLUSION: The lipocalin BLG is found in large amounts in cattle urine, accumulates in bovine dust samples and is aerosolized around farms. Its association with zinc favorably shapes the human cellular immune response towards Th1-cytokines in vitro. BLG together with zinc in stable dust protects mice from allergic sensitization. BLG with its associated ligands may in an innate manner contribute to the allergy-protective farm effect.

19.
Anal Bioanal Chem ; 414(15): 4359-4368, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34642781

RESUMO

We introduce a new concept of yeast-derived biological matrix reference material for metabolomics research relying on in vivo synthesis of a defined biomass, standardized extraction followed by absolute quantification with isotope dilution. The yeast Pichia pastoris was grown using full control- and online monitoring fed-batch fermentations followed by fast cold methanol quenching and boiling ethanol extraction. Dried extracts served for the quantification campaign. A metabolite panel of the evolutionarily conserved primary metabolome (amino acids, nucleotides, organic acids, and metabolites of the central carbon metabolism) was absolutely quantified by isotope dilution utilizing uniformly labeled 13C-yeast-based internal standards. The study involved two independent laboratories employing complementary mass spectrometry platforms, namely hydrophilic interaction liquid chromatography-high resolution mass spectrometry (HILIC-HRMS) and gas chromatography-tandem mass spectrometry (GC-MS/MS). Homogeneity, stability tests (on a panel of >70 metabolites over a period of 6 months), and excellent biological repeatability of independent fermentations over a period of 2 years showed the feasibility of producing biological reference materials on demand. The obtained control ranges proved to be fit for purpose as they were either superior or comparable to the established reference materials in the field.


Assuntos
Saccharomyces cerevisiae , Espectrometria de Massas em Tandem , Cromatografia Gasosa-Espectrometria de Massas , Isótopos/metabolismo , Metaboloma , Metabolômica/métodos , Pichia/química , Espectrometria de Massas em Tandem/métodos
20.
Talanta ; 236: 122828, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34635218

RESUMO

Non-targeted metabolomics is increasingly applied in various applications for understanding biological processes and finding novel biomarkers in living organisms. However, high-confidence identity confirmation of metabolites in complex biological samples is still a significant bottleneck, especially when using single-stage mass analysers. In the current study, a complete workflow for alternating in-source fragmentation on a time-of-flight mass spectrometry (TOFMS) instrument for non-targeted metabolomics is presented. Hydrophilic interaction liquid chromatography (HILIC) was employed to assess polar metabolites in yeast following ESI parameter optimization using experimental design principles, which revealed the key influence of fragmentor voltage for this application. Datasets from alternating in-source fragmentation high resolution mass spectrometry (HRMS) were evaluated using open-source data processing tools combined with public reference mass spectral databases. The significant influence of the selected fragmentor voltages on the abundance of the primary analyte ion of interest and the extent of in-source fragmentation allowed an optimum selection of qualifier fragments for the different metabolites. The new acquisition and evaluation workflow was implemented for the non-targeted analysis of yeast extract samples whereby more than 130 metabolites were putatively annotated with more than 40% considered to be of high confidence. The presented workflow contains a fully elaborated acquisition and evaluation methodology using alternating in-source fragmentor voltages suitable for peak annotation and metabolite identity confirmation for non-targeted metabolomics applications performed on a single-stage HRMS platform.


Assuntos
Metabolômica , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas , Espectrometria de Massas , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...