Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neural Eng ; 18(1): 015002, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33624614

RESUMO

OBJECTIVE: Decoding neural activity has been limited by the lack of tools available to record from large numbers of neurons across multiple cortical regions simultaneously with high temporal fidelity. To this end, we developed the Argo system to record cortical neural activity at high data rates. APPROACH: Here we demonstrate a massively parallel neural recording system based on platinum-iridium microwire electrode arrays bonded to a CMOS voltage amplifier array. The Argo system is the highest channel count in vivo neural recording system, supporting simultaneous recording from 65 536 channels, sampled at 32 kHz and 12-bit resolution. This system was designed for cortical recordings, compatible with both penetrating and surface microelectrodes. MAIN RESULTS: We validated this system through initial bench testing to determine specific gain and noise characteristics of bonded microwires, followed by in-vivo experiments in both rat and sheep cortex. We recorded spiking activity from 791 neurons in rats and surface local field potential activity from over 30 000 channels in sheep. SIGNIFICANCE: These are the largest channel count microwire-based recordings in both rat and sheep. While currently adapted for head-fixed recording, the microwire-CMOS architecture is well suited for clinical translation. Thus, this demonstration helps pave the way for a future high data rate intracortical implant.


Assuntos
Amplificadores Eletrônicos , Neurônios , Animais , Eletrodos Implantados , Microeletrodos , Ratos , Ovinos
2.
ACS Nano ; 11(10): 9889-9897, 2017 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-28921943

RESUMO

Fluidic control and sampling in complex environments is an important process in biotechnology, materials synthesis, and microfluidics. An elegant solution to this problem has evolved in nature through cellular endocytosis, where the dynamic recruitment, self-assembly, and spherical budding of clathrin proteins allows cells to sample their external environment. Yet despite the importance and utility of endocytosis, artificial systems which can replicate this dynamic behavior have not been developed. Guided by clathrin's unusual structure, we created simplified metallic microparticles that capture the three-legged shape, particle curvature, and interfacial attachment characteristics of clathrin. These artificial clathrin mimics successfully recreate biomimetic analogues of clathrin's recruitment, assembly, and budding, ultimately forming extended networks at fluid interfaces and invaginating immiscible phases into spheres under external fields. Particle curvature was discovered to be a critical structural motif, greatly limiting irreversible aggregation and inducing the legs' selective tip-to-tip attraction. This architecture provides a template for a class of active self-assembly units to drive structural and dimensional transformations of liquid-liquid interfaces and microscale fluidic sampling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...