Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(12): 6521-6530, 2020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32156734

RESUMO

Necroptosis is a regulated necrotic cell death pathway involved in development and disease. Its signaling cascade results in the formation of disulfide bond-dependent amyloid-like polymers of mixed lineage kinase domain-like protein (MLKL), which mediate proinflammatory cell membrane disruption. We screened compound libraries provided by the National Cancer Institute and identified a small-molecule inhibitor of necroptosis named necroptosis-blocking compound 1 (NBC1). Biotin-labeled NBC1 specifically conjugates to heat shock protein Hsp70. NBC1 and PES-Cl, a known Hsp70 substrate-binding inhibitor, block the formation of MLKL polymers, but not MLKL tetramers in necroptosis-induced cells. In vitro, recombinant Hsp70 interacts with the N-terminal domain (NTD) of MLKL and promotes NTD polymerization, which has been shown to mediate the cell killing activity. Furthermore, the substrate-binding domain (SBD) of Hsp70 is sufficient to promote MLKL polymerization. NBC1 covalently conjugates cysteine 574 and cysteine 603 of the SBD to block its function. In addition, an SBD mutant with both cysteines mutated to serines loses its ability to promote MLKL polymerization. Interestingly, knockdown of Hsp70 in cells leads to MLKL destabilization, suggesting that MLKL might also be a client protein of Hsp70. In summary, using NBC1, an inhibitor of necroptosis, we identified Hsp70 as a molecular chaperone performing dual functions in necroptosis. It stabilizes MLKL protein under normal condition and promotes MLKL polymerization through its substrate-binding domain during necroptosis.


Assuntos
Proteínas de Choque Térmico HSP70/antagonistas & inibidores , Proteínas de Choque Térmico HSP70/metabolismo , Necroptose/efeitos dos fármacos , Piperidinas/farmacologia , Proteínas Quinases/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Técnicas de Silenciamento de Genes , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico HSP70/genética , Células HT29 , Humanos , Estrutura Molecular , Mutação , Piperidinas/química , Ligação Proteica , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/genética , Multimerização Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia
2.
Proc Natl Acad Sci U S A ; 117(4): 1962-1970, 2020 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-31932442

RESUMO

Necroptosis is a regulated necrotic cell death pathway, mediated by a supermolecular complex called the necrosome, which contains receptor-interacting protein kinase 1 and 3 (RIPK1, RIPK3) and mixed-lineage kinase domain-like protein (MLKL). Phosphorylation of human RIPK3 at serine 227 (S227) has been shown to be required for downstream MLKL binding and necroptosis progression. Tandem immunoprecipitation of RIPK3 reveals that casein kinase 1 (CK1) family proteins associate with the necrosome upon necroptosis induction, and this interaction depends on the kinase activity of RIPK3. In addition, CK1 proteins colocalize with RIPK3 puncta during necroptosis. Importantly, CK1 proteins directly phosphorylate RIPK3 at S227 in vitro and in vivo. Loss of CK1 proteins abolishes S227 phosphorylation and blocks necroptosis. Furthermore, a RIPK3 mutant with mutations in the CK1 recognition motif fails to be phosphorylated at S227, does not bind or phosphorylate MLKL, and is unable to activate necroptosis. These results strongly suggest that CK1 proteins are necrosome components which are responsible for RIPK3-S227 phosphorylation.


Assuntos
Caseína Quinase 1 épsilon/metabolismo , Caseína Quinase Ialfa/metabolismo , Caseína Quinase Idelta/metabolismo , Necroptose , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Serina/metabolismo , Caseína Quinase 1 épsilon/genética , Caseína Quinase Ialfa/genética , Caseína Quinase Idelta/genética , Células HeLa , Humanos , Fosforilação , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Serina/genética
3.
J Vis Exp ; (134)2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-29757289

RESUMO

Amyloid or amyloid-like fibers have been associated with many human diseases, and are now being discovered to be important for many signaling pathways. The ability to readily detect the formation of these fibers under various experimental conditions is essential for understanding their potential function. Many methods have been used to detect the fibers, but not without some drawbacks. For example, electron microscopy (EM), or staining with Congo Red or Thioflavin T often requires purification of the fibers. On the other hand, semi-denaturing detergent agarose gel electrophoresis (SDD-AGE) allows detection of the SDS-resistant amyloid-like fibers in the cell extracts without purification. In addition, it allows the comparison of the size difference of the fibers. More importantly, it can be used to identify specific proteins within the fibers by Western blotting. It is less time consuming and more easily accessible to a wider number of labs. SDD-AGE results often show variable degree of heterogeneity. It raises the question whether part of the heterogeneity results from the dissociation of the protein complex during the electrophoresis in the presence of SDS. For this reason, we have employed a second dimension of SDD-AGE to determine if the size heterogeneity seen in SDD-AGE is truly a result of fiber heterogeneity in vivo and not a result of either degradation or dissociation of some of the proteins during electrophoresis. This method allows fast, qualitative confirmation that the amyloid or amyloid-like fibers are not partially dissociating during the SDD-AGE process.


Assuntos
Amiloide/química , Detergentes/química , Eletroforese em Gel de Ágar/métodos , Eletroforese em Gel Bidimensional/métodos , Microscopia Eletrônica/métodos , Humanos
4.
Proc Natl Acad Sci U S A ; 114(36): E7450-E7459, 2017 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-28827318

RESUMO

Mixed-lineage kinase domain-like protein (MLKL) is essential for TNF-α-induced necroptosis. How MLKL promotes cell death is still under debate. Here we report that MLKL forms SDS-resistant, disulfide bond-dependent polymers during necroptosis in both human and mouse cells. MLKL polymers are independent of receptor-interacting protein kinase 1 and 3 (RIPK1/RIPK3) fibers. Large MLKL polymers are more than 2 million Da and are resistant to proteinase K digestion. MLKL polymers are fibers 5 nm in diameter under electron microscopy. Furthermore, the recombinant N-terminal domain of MLKL forms amyloid-like fibers and binds Congo red dye. MLKL mutants that cannot form polymers also fail to induce necroptosis efficiently. Finally, the compound necrosulfonamide conjugates cysteine 86 of human MLKL and blocks MLKL polymer formation and subsequent cell death. These results demonstrate that disulfide bond-dependent, amyloid-like MLKL polymers are necessary and sufficient to induce necroptosis.


Assuntos
Amiloide/metabolismo , Apoptose/efeitos dos fármacos , Dissulfetos/metabolismo , Necrose/induzido quimicamente , Polímeros/farmacologia , Proteínas Quinases/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Células HT29 , Células HeLa , Humanos , Camundongos , Necrose/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...