Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Plant Sci ; 335: 111819, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562732

RESUMO

Human Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) functions as a dNTPase to maintain dNTP pool balance. In eukaryotes, the limiting step in de novo dNTP biosynthesis is catalyzed by RIBONUCLEOTIDE REDUCTASE (RNR). In Arabidopsis, the RNR1 subunit of RNR is encoded by CRINKLED LEAVES 8 (CLS8), and RNR2 by three paralogous genes, including TSO MEANING 'UGLY' IN CHINESE 2 (TSO2). In plants, DIFFERENTIAL DEVELOPMENT OF VASCULAR ASSOCIATED CELLS 1 (DOV1) catalyzes the first step of the de novo biosynthesis of purines. Here, to explore the role of VENOSA4 (VEN4), the most likely Arabidopsis ortholog of human SAMHD1, we studied the ven4-0 point mutation, whose leaf phenotype was stronger than those of its insertional alleles. Structural predictions suggested that the E249L substitution in the mutated VEN4-0 protein rigidifies its 3D structure. The morphological phenotypes of the ven4, cls8, and dov1 single mutants were similar, and those of the ven4 tso2 and ven4 dov1 double mutants were synergistic. The ven4-0 mutant had reduced levels of four amino acids related to dNTP biosynthesis, including glutamine and glycine, which are precursors in the de novo purine biosynthesis. Our results reveal high functional conservation between VEN4 and SAMHD1 in dNTP metabolism.


Assuntos
Arabidopsis , Ribonucleotídeo Redutases , Humanos , Proteína 1 com Domínio SAM e Domínio HD/genética , Ribonucleotídeo Redutases/genética , Ribonucleotídeo Redutases/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Fenótipo
2.
Free Radic Biol Med ; 200: 117-129, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36870374

RESUMO

Alternative splicing is a key posttranscriptional gene regulatory process, acting in diverse adaptive and basal plant processes. Splicing of precursor-messenger RNA (pre-mRNA) is catalyzed by a dynamic ribonucleoprotein complex, designated the spliceosome. In a suppressor screen, we identified a nonsense mutation in the Smith (Sm) antigen protein SME1 to alleviate photorespiratory H2O2-dependent cell death in catalase deficient plants. Similar attenuation of cell death was observed upon chemical inhibition of the spliceosome, suggesting pre-mRNA splicing inhibition to be responsible for the observed cell death alleviation. Furthermore, the sme1-2 mutants showed increased tolerance to the reactive oxygen species inducing herbicide methyl viologen. Both an mRNA-seq and shotgun proteomic analysis in sme1-2 mutants displayed a constitutive molecular stress response, together with extensive alterations in pre-mRNA splicing of transcripts encoding metabolic enzymes and RNA binding proteins, even under unstressed conditions. Using SME1 as a bait to identify protein interactors, we provide experimental evidence for almost 50 homologs of the mammalian spliceosome-associated protein to reside in the Arabidopsis thaliana spliceosome complexes and propose roles in pre-mRNA splicing for four uncharacterized plant proteins. Furthermore, as for sme1-2, a mutant in the Sm core assembly protein ICLN resulted in a decreased sensitivity to methyl viologen. Taken together, these data show that both a perturbed Sm core composition and assembly results in the activation of a defense response and in enhanced resilience to oxidative stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Precursores de RNA/genética , Precursores de RNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Peróxido de Hidrogênio/farmacologia , Peróxido de Hidrogênio/metabolismo , Paraquat , Proteômica , Processamento Alternativo , Mutação , RNA Mensageiro/metabolismo , Estresse Oxidativo , Regulação da Expressão Gênica de Plantas , Mamíferos/metabolismo
3.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36901985

RESUMO

The assembly of von Willebrand factor (VWF) into ordered helical tubules within endothelial Weibel-Palade bodies (WPBs) is required for the efficient deployment of the protein at sites of vascular injury. VWF trafficking and storage are sensitive to cellular and environmental stresses that are associated with heart disease and heart failure. Altered storage of VWF manifests as a change in WPB morphology from a rod shape to a rounded shape and is associated with impaired VWF deployment during secretion. In this study, we examined the morphology, ultrastructure, molecular composition and kinetics of exocytosis of WPBs in cardiac microvascular endothelial cells isolated from explanted hearts of patients with a common form of heart failure, dilated cardiomyopathy (DCM; HCMECD), or from nominally healthy donors (controls; HCMECC). Using fluorescence microscopy, WPBs in HCMECC (n = 3 donors) showed the typical rod-shaped morphology containing VWF, P-selectin and tPA. In contrast, WPBs in primary cultures of HCMECD (n = 6 donors) were predominantly rounded in shape and lacked tissue plasminogen activator (t-PA). Ultrastructural analysis of HCMECD revealed a disordered arrangement of VWF tubules in nascent WPBs emerging from the trans-Golgi network. HCMECD WPBs still recruited Rab27A, Rab3B, Myosin-Rab Interacting Protein (MyRIP) and Synaptotagmin-like protein 4a (Slp4-a) and underwent regulated exocytosis with kinetics similar to that seen in HCMECc. However, secreted extracellular VWF strings from HCMECD were significantly shorter than for endothelial cells with rod-shaped WPBs, although VWF platelet binding was similar. Our observations suggest that VWF trafficking, storage and haemostatic potential are perturbed in HCMEC from DCM hearts.


Assuntos
Insuficiência Cardíaca , Fator de von Willebrand , Humanos , Fator de von Willebrand/metabolismo , Células Endoteliais/metabolismo , Ativador de Plasminogênio Tecidual/metabolismo , Células Cultivadas , Exocitose , Insuficiência Cardíaca/metabolismo
4.
Plant Physiol ; 191(2): 1383-1403, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36454669

RESUMO

Plant breeders have indirectly selected for variation at circadian-associated loci in many of the world's major crops, when breeding to increase yield and improve crop performance. Using an eight-parent Multiparent Advanced Generation Inter-Cross (MAGIC) population, we investigated how variation in circadian clock-associated genes contributes to the regulation of heading date in UK and European winter wheat (Triticum aestivum) varieties. We identified homoeologues of EARLY FLOWERING 3 (ELF3) as candidates for the Earliness per se (Eps) D1 and B1 loci under field conditions. We then confirmed a single-nucleotide polymorphism within the coding region of TaELF3-B1 as a candidate polymorphism underlying the Eps-B1 locus. We found that a reported deletion at the Eps-D1 locus encompassing TaELF3-D1 is, instead, an allele that lies within an introgression region containing an inversion relative to the Chinese Spring D genome. Using Triticum turgidum cv. Kronos carrying loss-of-function alleles of TtELF3, we showed that ELF3 regulates heading, with loss of a single ELF3 homoeologue sufficient to alter heading date. These studies demonstrated that ELF3 forms part of the circadian oscillator; however, the loss of all homoeologues was required to affect circadian rhythms. Similarly, loss of functional LUX ARRHYTHMO (LUX) in T. aestivum, an orthologue of a protein partner of Arabidopsis (Arabidopsis thaliana) ELF3, severely disrupted circadian rhythms. ELF3 and LUX transcripts are not co-expressed at dusk, suggesting that the structure of the wheat circadian oscillator might differ from that of Arabidopsis. Our demonstration that alterations to ELF3 homoeologues can affect heading date separately from effects on the circadian oscillator suggests a role for ELF3 in cereal photoperiodic responses that could be selected for without pleiotropic deleterious alterations to circadian rhythms.


Assuntos
Arabidopsis , Relógios Circadianos , Triticum/genética , Arabidopsis/genética , Melhoramento Vegetal , Ritmo Circadiano/genética , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas
5.
Sci Rep ; 12(1): 14229, 2022 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-35987959

RESUMO

Two homoeologous QTLs for number of spikelets per spike (SPS) were mapped on chromosomes 7AL and 7BL using two wheat MAGIC populations. Sets of lines contrasting for the QTL on 7AL were developed which allowed for the validation and fine mapping of the 7AL QTL and for the identification of a previously described candidate gene, WHEAT ORTHOLOG OF APO1 (WAPO1). Using transgenic overexpression in both a low and a high SPS line, we provide a functional validation for the role of this gene in determining SPS also in hexaploid wheat. We show that the expression levels of this gene positively correlate with SPS in multiple MAGIC founder lines under field conditions as well as in transgenic lines grown in the greenhouse. This work highlights the potential use of WAPO1 in hexaploid wheat for further yield increases. The impact of WAPO1 and SPS on yield depends on other genetic and environmental factors, hence, will require a finely balanced expression level to avoid the development of detrimental pleiotropic phenotypes.


Assuntos
Pão , Triticum , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Fenótipo , Locos de Características Quantitativas , Triticum/genética
6.
Nat Commun ; 13(1): 3031, 2022 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-35641503

RESUMO

In response to vascular damage, P-selectin molecules are secreted onto the surface of cells that line our blood vessels. They then serve as mechanical anchors to capture leucocytes from the blood stream. Here, we track individual P-selectin molecules released at the surface of live endothelial cells following stimulated secretion. We find P-selectin initially shows fast, unrestricted diffusion but within a few minutes, movement becomes increasingly restricted and ~50% of the molecules become completely immobile; a process similar to a sol-gel transition. We find removal of the extracellular C-type lectin domain (ΔCTLD) and/or intracellular cytoplasmic tail domain (ΔCT) has additive effects on diffusive motion while disruption of the adapter complex, AP2, or removal of cell-surface heparan sulphate restores mobility of full-length P-selectin close to that of ΔCT and ΔCTLD respectively. We have found P-selectin spreads rapidly from sites of exocytosis and evenly decorates the cell surface, but then becomes less mobile and better-suited to its mechanical anchoring function.


Assuntos
Células Endoteliais , Selectina-P , Membrana Celular/metabolismo , Células Endoteliais/metabolismo , Exocitose , Leucócitos/metabolismo , Selectina-P/metabolismo
7.
Sci Rep ; 11(1): 23379, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34862448

RESUMO

A pathogen inactivation step during collection or processing of clinical samples has the potential to reduce infectious risks associated with diagnostic procedures. It is essential that these inactivation methods are demonstrated to be effective, particularly for non-traditional inactivation reagents or for commercial products where the chemical composition is undisclosed. This study assessed inactivation effectiveness of twenty-four next-generation (guanidine-free) nucleic acid extraction lysis buffers and twelve rapid antigen test buffers against SARS-CoV-2, the causative agent of COVID-19. These data have significant safety implications for SARS-CoV-2 diagnostic testing and support the design and evidence-based risk assessment of these procedures.


Assuntos
Antivirais/farmacologia , Teste Sorológico para COVID-19/métodos , SARS-CoV-2/efeitos dos fármacos , Acetamidas , Soluções Tampão , COVID-19/diagnóstico , COVID-19/virologia , Fluoracetatos , Guanidina/efeitos adversos , Humanos , Inativação de Vírus/efeitos dos fármacos
8.
Science ; 372(6541)2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926926

RESUMO

Human health is dependent on a plentiful and nutritious supply of food, primarily derived from crop plants. Rhythmic supply of light as a result of the day and night cycle led to the evolution of circadian clocks that modulate most plant physiology, photosynthesis, metabolism, and development. To regulate crop traits and adaptation, breeders have indirectly selected for variation at circadian genes. The pervasive impact of the circadian system on crops suggests that future food production might be improved by modifying circadian rhythms, engineering the timing of transgene expression, and applying agricultural treatments at the most effective time of day. We describe the applied research required to take advantage of circadian biology in agriculture to increase production and reduce inputs.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Produtos Agrícolas/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Produtos Agrícolas/genética , Abastecimento de Alimentos , Regulação da Expressão Gênica de Plantas , Loci Gênicos , Seleção Genética
9.
Plant Cell ; 33(6): 2032-2057, 2021 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-33713138

RESUMO

Signaling events triggered by hydrogen peroxide (H2O2) regulate plant growth and defense by orchestrating a genome-wide transcriptional reprogramming. However, the specific mechanisms that govern H2O2-dependent gene expression are still poorly understood. Here, we identify the Arabidopsis Mediator complex subunit MED8 as a regulator of H2O2 responses. The introduction of the med8 mutation in a constitutive oxidative stress genetic background (catalase-deficient, cat2) was associated with enhanced activation of the salicylic acid pathway and accelerated cell death. Interestingly, med8 seedlings were more tolerant to oxidative stress generated by the herbicide methyl viologen (MV) and exhibited transcriptional hyperactivation of defense signaling, in particular salicylic acid- and jasmonic acid-related pathways. The med8-triggered tolerance to MV was manipulated by the introduction of secondary mutations in salicylic acid and jasmonic acid pathways. In addition, analysis of the Mediator interactome revealed interactions with components involved in mRNA processing and microRNA biogenesis, hence expanding the role of Mediator beyond transcription. Notably, MED8 interacted with the transcriptional regulator NEGATIVE ON TATA-LESS, NOT2, to control the expression of H2O2-inducible genes and stress responses. Our work establishes MED8 as a component regulating oxidative stress responses and demonstrates that it acts as a negative regulator of H2O2-driven activation of defense gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Herbicidas/farmacologia , Complexo Mediador/metabolismo , Estresse Oxidativo/fisiologia , Amitrol (Herbicida)/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Complexo Mediador/genética , MicroRNAs , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Plantas Geneticamente Modificadas , Domínios Proteicos , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo
10.
Plant Cell Environ ; 44(5): 1451-1467, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33464569

RESUMO

Nicotinamide-adenine dinucleotide (NAD) is involved in redox homeostasis and acts as a substrate for NADases, including poly(ADP-ribose) polymerases (PARPs) that add poly(ADP-ribose) polymers to proteins and DNA, and sirtuins that deacetylate proteins. Nicotinamide, a by-product of NADases increases circadian period in both plants and animals. In mammals, the effect of nicotinamide on circadian period might be mediated by the PARPs and sirtuins because they directly bind to core circadian oscillator genes. We have investigated whether PARPs and sirtuins contribute to the regulation of the circadian oscillator in Arabidopsis. We found no evidence that PARPs and sirtuins regulate the circadian oscillator of Arabidopsis or are involved in the response to nicotinamide. RNA-seq analysis indicated that PARPs regulate the expression of only a few genes, including FLOWERING LOCUS C. However, we found profound effects of reduced sirtuin 1 expression on gene expression during the day but not at night, and an embryo lethal phenotype in knockouts. Our results demonstrate that PARPs and sirtuins are not associated with NAD regulation of the circadian oscillator and that sirtuin 1 is associated with daytime regulation of gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Poli(ADP-Ribose) Polimerases/metabolismo , Sirtuínas/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Ritmo Circadiano/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Mutação/genética , NAD+ Nucleosidase/antagonistas & inibidores , NAD+ Nucleosidase/metabolismo , Niacinamida/farmacologia , Fenótipo , Poli(ADP-Ribose) Polimerases/genética , Sementes/efeitos dos fármacos , Sementes/metabolismo
11.
Euro Surveill ; 25(43)2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33124554

RESUMO

BackgroundRapid diagnostic tests are commonly used by hospital laboratories in England to detect rotavirus (RV), and results are used to inform clinical management and support national surveillance of the infant rotavirus immunisation programme since 2013. In 2017, the Public Health England (PHE) national reference laboratory for enteric viruses observed that the presence of RV could not be confirmed by PCR in a proportion of RV-positive samples referred for confirmatory detection.AimWe aimed to compare the positivity rate of detection methods used by hospital laboratories with the PHE confirmatory test rate.MethodsRotavirus specimens testing positive at local hospital laboratories were re-tested at the PHE national reference laboratory using a PCR test. Confirmatory results were compared to original results from the PHE laboratory information management system.ResultsHospital laboratories screened 70.1% (2,608/3,721) of RV samples using immunochromatographic assay (IC) or rapid tests, 15.5% (578/3,721) using enzyme immunoassays (EIA) and 14.4% (535/3,721) using PCR. Overall, 1,011/3,721 (27.2%) locally RV-positive samples referred to PHE in 2016 and 2017 failed RV detection using the PHE reference laboratory PCR test. Confirmation rates were 66.9% (1,746/2,608) for the IC tests, 87.4% (505/578) for the EIA and 86.4% (465/535) for the PCR assays. Seasonal confirmation rate discrepancies were also evident for IC tests.ConclusionsThis report highlights high false positive rates with the most commonly used RV screening tests and emphasises the importance of implementing verified confirmatory tests for RV detections. This has implications for clinical diagnosis and national surveillance.


Assuntos
Vigilância em Saúde Pública , Infecções por Rotavirus , Rotavirus , Inglaterra/epidemiologia , Humanos , Lactente , Estudos Retrospectivos , Rotavirus/isolamento & purificação , Infecções por Rotavirus/diagnóstico , Infecções por Rotavirus/epidemiologia
12.
J Clin Microbiol ; 58(11)2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32839250

RESUMO

The COVID-19 pandemic has necessitated a multifaceted rapid response by the scientific community, bringing researchers, health officials, and industry together to address the ongoing public health emergency. To meet this challenge, participants need an informed approach for working safely with the etiological agent, the novel human coronavirus SARS-CoV-2. Work with infectious SARS-CoV-2 is currently restricted to high-containment laboratories, but material can be handled at a lower containment level after inactivation. Given the wide array of inactivation reagents that are being used in laboratories during this pandemic, it is vital that their effectiveness is thoroughly investigated. Here, we evaluated a total of 23 commercial reagents designed for clinical sample transportation, nucleic acid extraction, and virus inactivation for their ability to inactivate SARS-CoV-2, as well as seven other common chemicals, including detergents and fixatives. As part of this study, we have also tested five filtration matrices for their effectiveness at removing the cytotoxic elements of each reagent, permitting accurate determination of levels of infectious virus remaining following treatment. In addition to providing critical data informing inactivation methods and risk assessments for diagnostic and research laboratories working with SARS-CoV-2, these data provide a framework for other laboratories to validate their inactivation processes and to guide similar studies for other pathogens.


Assuntos
Betacoronavirus/efeitos dos fármacos , Indicadores e Reagentes/farmacologia , Inativação de Vírus/efeitos dos fármacos , Animais , Betacoronavirus/isolamento & purificação , COVID-19 , Teste para COVID-19 , Sobrevivência Celular/efeitos dos fármacos , Chlorocebus aethiops , Técnicas de Laboratório Clínico , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/virologia , Filtração/instrumentação , Humanos , Pandemias , Pneumonia Viral/diagnóstico , Pneumonia Viral/virologia , SARS-CoV-2 , Células Vero
13.
F1000Res ; 9: 692, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35387199

RESUMO

In this study, we present 84 transmission electron microscopy (TEM) images of human brainstem tissue from 11 cases of late onset Parkinson's disease (PD). The tissues were fixed, embedded, sectioned, and stained for TEM application. In addition, we present 14 images from autopsy specimens of 1 case of human poliomyelitis infection as positive controls and 14 images from 8 cases of autopsy specimens of other conditions as negative controls. In the TEM images of the PD cases there were cytoplasmic inclusion bodies consisting of virus-like particles (VLP) 30 nm in diameter that were associated with endoplasmic reticulum membranes.  In the nuclei of the PD neurons there were VLP ranging from 40 nm to 50 nm in diameter. In the poliomyelitis cases, similar particles as were observed in PD which were interpreted to be poliomyelitis virus particles. In the negative controls one case was identified which showed similar VLP (Figure 1, controls).  A Lewy body was found in this "control" case (Figure 10) suggesting that this was an undiagnosed case of PD. Cytoplasmic ribosomes measuring approximately 17 nm were observed in the control neurons.

14.
J Biol Chem ; 294(47): 17931-17940, 2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31530638

RESUMO

Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase (Rca) is a AAA+ enzyme that uses ATP to remove inhibitors from the active site of Rubisco, the central carboxylation enzyme of photosynthesis. Rca α and ß isoforms exist in most higher plant species, with the α isoform being identical to the ß form but having an additional 25-45 amino acids at the Rca C terminus, known as the C-terminal extension (CTE). Rca is inhibited by ADP, and the extent of ADP sensitivity of the Rca complex can be modulated by the CTE of the α isoform, particularly in relation to a disulfide bond structure that is specifically reduced by the redox-regulatory enzyme thioredoxin-f. Here, we introduced single point mutations of Lys-428 in the CTE of Rca-α from wheat (Triticum aestivum) (TaRca2-α). Substitution of Lys-428 with Arg dramatically altered ADP inhibition, independently of thioredoxin-f regulation. We determined that the reduction in ADP inhibition in the K428R variant is not due to a change in ADP affinity, as the apparent constant for ADP binding was not altered by the K428R substitution. Rather, we observed that the K428R substitution strongly increased ATP substrate affinity and ATP-dependent catalytic velocity. These results suggest that the Lys-428 residue is involved in interacting with the γ-phosphate of ATP. Considering that nucleotide-dependent Rca activity regulates Rubisco and thus photosynthesis during fluctuating irradiance, the K428R substitution could potentially provide a mechanism for boosting the performance of wheat grown in the dynamic light environments of the field.


Assuntos
Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Mutação Puntual/genética , Triticum/enzimologia , Sequência de Aminoácidos , Estabilidade Enzimática , Cinética , Especificidade por Substrato
15.
PLoS Comput Biol ; 15(1): e1006674, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30703082

RESUMO

The circadian oscillator, an internal time-keeping device found in most organisms, enables timely regulation of daily biological activities by maintaining synchrony with the external environment. The mechanistic basis underlying the adjustment of circadian rhythms to changing external conditions, however, has yet to be clearly elucidated. We explored the mechanism of action of nicotinamide in Arabidopsis thaliana, a metabolite that lengthens the period of circadian rhythms, to understand the regulation of circadian period. To identify the key mechanisms involved in the circadian response to nicotinamide, we developed a systematic and practical modeling framework based on the identification and comparison of gene regulatory dynamics. Our mathematical predictions, confirmed by experimentation, identified key transcriptional regulatory mechanisms of circadian period and uncovered the role of blue light in the response of the circadian oscillator to nicotinamide. We suggest that our methodology could be adapted to predict mechanisms of drug action in complex biological systems.


Assuntos
Arabidopsis , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Modelos Biológicos , Niacinamida/farmacologia , Biologia de Sistemas , Transcriptoma
16.
J Cell Sci ; 132(5)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30659119

RESUMO

Elevations of intracellular free Ca2+ concentration ([Ca2+]i) are a potent trigger for Weibel-Palade body (WPB) exocytosis and secretion of von Willebrand factor (VWF) from endothelial cells; however, the identity of WPB-associated Ca2+-sensors involved in transducing acute increases in [Ca2+]i into granule exocytosis remains unknown. Here, we show that synaptotagmin 5 (SYT5) is expressed in human umbilical vein endothelial cells (HUVECs) and is recruited to WPBs to regulate Ca2+-driven WPB exocytosis. Western blot analysis of HUVECs identified SYT5 protein, and exogenously expressed SYT5-mEGFP localised almost exclusively to WPBs. shRNA-mediated knockdown of endogenous SYT5 (shSYT5) reduced the rate and extent of histamine-evoked WPB exocytosis and reduced secretion of the WPB cargo VWF-propeptide (VWFpp). The shSYT5-mediated reduction in histamine-evoked WPB exocytosis was prevented by expression of shRNA-resistant SYT5-mCherry. Overexpression of SYT5-EGFP increased the rate and extent of histamine-evoked WPB exocytosis, and increased secretion of VWFpp. Expression of a Ca2+-binding defective SYT5 mutant (SYT5-Asp197Ser-EGFP) mimicked depletion of endogenous SYT5. We identify SYT5 as a WPB-associated Ca2+ sensor regulating Ca2+-dependent secretion of stored mediators from vascular endothelial cells.


Assuntos
Endotélio Vascular/fisiologia , Exocitose/imunologia , Sinaptotagminas/metabolismo , Corpos de Weibel-Palade/metabolismo , Coagulação Sanguínea , Secreções Corporais , Cálcio/metabolismo , Células Cultivadas , Endotélio Vascular/patologia , Proteínas de Fluorescência Verde/metabolismo , Histamina/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Mutação/genética , RNA Interferente Pequeno/genética , Sinaptotagminas/genética , Fator de von Willebrand/metabolismo
17.
New Phytol ; 220(3): 893-907, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30191576

RESUMO

The LATE ELONGATED HYPOCOTYL (LHY) transcription factor functions as part of the oscillatory mechanism of the Arabidopsis circadian clock. This paper reports the genome-wide analysis of its binding targets and reveals a role in the control of abscisic acid (ABA) biosynthesis and downstream responses. LHY directly repressed expression of 9-cis-epoxycarotenoid dioxygenase enzymes, which catalyse the rate-limiting step of ABA biosynthesis. This suggested a mechanism for the circadian control of ABA accumulation in wild-type plants. Consistent with this hypothesis, ABA accumulated rhythmically in wild-type plants, peaking in the evening. LHY-overexpressing plants had reduced levels of ABA under drought stress, whereas loss-of-function mutants exhibited an altered rhythm of ABA accumulation. LHY also bound the promoter of multiple components of ABA signalling pathways, suggesting that it may also act to regulate responses downstream of the hormone. LHY promoted expression of ABA-responsive genes responsible for increased tolerance to drought and osmotic stress but alleviated the inhibitory effect of ABA on seed germination and plant growth. This study reveals a complex interaction between the circadian clock and ABA pathways, which is likely to make an important contribution to plant performance under drought and osmotic stress conditions.


Assuntos
Ácido Abscísico/biossíntese , Arabidopsis/genética , Arabidopsis/metabolismo , Vias Biossintéticas , Ritmo Circadiano , Proteínas de Ligação a DNA/metabolismo , Genoma de Planta , Transdução de Sinais , Fatores de Transcrição/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Sequência de Bases , Sítios de Ligação , Vias Biossintéticas/efeitos dos fármacos , Relógios Circadianos/efeitos dos fármacos , Relógios Circadianos/genética , Ritmo Circadiano/efeitos dos fármacos , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Ontologia Genética , Regiões Promotoras Genéticas , Ligação Proteica/efeitos dos fármacos
18.
Nat Plants ; 4(9): 690-698, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127410

RESUMO

In the last decade, the view of circadian oscillators has expanded from transcriptional feedback to incorporate post-transcriptional, post-translational, metabolic processes and ionic signalling. In plants and animals, there are circadian oscillations in the concentration of cytosolic free Ca2+ ([Ca2+]cyt), though their purpose has not been fully characterized. We investigated whether circadian oscillations of [Ca2+]cyt regulate the circadian oscillator of Arabidopsis thaliana. We report that in Arabidopsis, [Ca2+]cyt circadian oscillations can regulate circadian clock function through the Ca2+-dependent action of CALMODULIN-LIKE24 (CML24). Genetic analyses demonstrate a linkage between CML24 and the circadian oscillator, through pathways involving the circadian oscillator gene TIMING OF CAB2 EXPRESSION1 (TOC1).


Assuntos
Arabidopsis/fisiologia , Cálcio/metabolismo , Relógios Circadianos/fisiologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cálcio/fisiologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Fatores de Transcrição/metabolismo
19.
Plant Physiol ; 178(1): 358-371, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29997180

RESUMO

Circadian clocks drive rhythms with a period near 24 h, but the molecular basis of the regulation of the period of the circadian clockis poorly understood. We previously demonstrated that metabolites affect the free-running period of the circadian oscillator of Arabidopsis (Arabidopsis thaliana), with endogenous sugars acting as an accelerator and exogenous nicotinamide acting as a brake. Changes in circadian oscillator period are thought to adjust the timing of biological activities through the process of entrainment, in which the circadian oscillator becomes synchronized to rhythmic signals such as light and dark cycles as well as changes in internal metabolism. To identify the molecular components associated with the dynamic adjustment of circadian period, we performed a forward genetic screen. We identified Arabidopsis mutants that were either period insensitive to nicotinamide (sin) or period oversensitive to nicotinamide (son). We mapped son1 to BIG, a gene of unknown molecular function that was shown previously to play a role in light signaling. We found that son1 has an early entrained phase, suggesting that the dynamic alteration of circadian period contributes to the correct timing of biological events. Our data provide insight into how the dynamic period adjustment of circadian oscillators contributes to establishing a correct phase relationship with the environment and show that BIG is involved in this process.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas de Ligação a Calmodulina/genética , Relógios Circadianos/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Proteínas de Ligação a Calmodulina/metabolismo , Relógios Circadianos/efeitos da radiação , Ritmo Circadiano/genética , Ritmo Circadiano/efeitos da radiação , Luz , Plantas Geneticamente Modificadas
20.
F1000Res ; 7: 302, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29899977

RESUMO

Background: In a previous study on encephalitis lethargica, we identified an enterovirus in autopsy brain material. Transmission electron microscopy (TEM), immunohistochemistry (IHC) and molecular analysis were employed.  Our present objective was to investigate, using a similar approach, as to whether virus-like particles (VLP) and enterovirus antigen are present in Parkinson's disease (PD) brainstem neurons. Methods: Fixed tissue from autopsy specimens of late onset PD and control brainstem tissue were received for study. The brain tissue was processed for TEM and IHC according to previous published methods. Results:  We observed VLP in the brainstem neurons of all the cases of PD that were examined.  In the neurons' cytoplasm there were many virus factories consisting of VLP and endoplasmic reticulum membranes. In some neurons, the virus factories contained incomplete VLP. Complete VLP in some neurons' virus factories had an average diameter of 31 nm, larger than control brain ribosomes. In the nuclei, there were VLP with an average diameter of 40 nm. In cases of human poliomyelitis, there were cytoplasmic virus factories and intranuclear virus particles similar to those observed in PD. On preparing PD brain sections for IHC there was positive staining using anti-poliovirus antibody and anti-coxsackie antibody. This result was statistically significant. Conclusions: We present evidence for an enterovirus infection in PD.  For future studies, virus isolation and molecular analysis is suggested.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...