Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dairy Sci ; 93(8): 3469-86, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20655415

RESUMO

Fat-reduced cheeses often suffer from undesirable texture, flavor, and cooking properties. Exopolysaccharides (EPS) produced by starter strains have been proposed as a mechanism to increase yield and to improve the texture and cooking properties of reduced-fat cheeses. The objective of this work was to assess the influence of an exopolysaccharide on the yield, texture, cooking properties, and quality of half-fat Cheddar cheese. Two pilot-scale half-fat Cheddar cheeses were manufactured using single starters of an isogenic strain of Lactococcus lactis ssp. cremoris (DPC6532 and DPC6533) that differed in their ability to produce exopolysaccharide. Consequently, any differences detected between the cheeses were attributed to the presence of the exopolysaccharide. The results indicated that cheeses made with the exopolysaccharide-producing starter had an 8.17% increase in actual cheese yield (per 100 kg of milk), a 9.49% increase in moisture content, increase in water activity and water desorption rate at relative humidities

Assuntos
Queijo/análise , Gorduras/análise , Lactococcus lactis/metabolismo , Polissacarídeos Bacterianos/biossíntese , Animais , Queijo/microbiologia , Fenômenos Químicos , Microbiologia de Alimentos , Tecnologia de Alimentos , Projetos Piloto
2.
J Dairy Sci ; 89(10): 3749-62, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16960049

RESUMO

Fast-ripened Cheddar cheeses for ingredient purposes were produced by addition of a dried enzyme-modified cheese (EMC; 0.25 and 1 g/100 g of milled curd) at the salting stage during a standard Cheddar cheese-making procedure. Populations of starter and nonstarter lactic acid bacteria (NSLAB), levels of proteolysis and lipolysis, volatile analysis, and flavor development (by quantitative descriptive sensory analysis) were monitored over a 6-mo ripening period. Levels of free AA and free fatty acids were elevated in the experimental cheeses on d 1 because of inclusion of the EMC. Counts of NSLAB were also elevated in the experimental cheeses compared with the control cheese from the start of ripening. Levels of free AA were slightly elevated in the experimental cheeses at 1, 2, and 4 mo, but significantly greater accumulations were detected by 6 mo of ripening, with His, Leu, and glutamate reflecting the greatest increases. Levels of long-chain free fatty acids increased up to 2 mo, indicating an initial stimulation of lipolysis, but had decreased by 6 mo, indicating greater catabolism, probably caused by NSLAB and increased starter lysis. Principal component analysis of the volatile compounds showed few differences in the aroma profiles among the cheeses up to 4 mo of ripening, but a large separation of the cheeses supplemented with EMC relative to the control was observed by 6 mo. Sensory analysis of the cheeses with added EMC showed an acceleration of 2 mo in flavor development compared with the control cheese with the addition of 1 g/100 g of EMC developing a flavor profile at 4 mo similar to the control cheese at 6 mo of ripening. However, atypical Cheddar flavors developed on prolonged storage. This study shows the potential of adding EMC during Cheddar production to produce a fast-ripened ingredient-type Cheddar cheese.


Assuntos
Queijo/normas , Tecnologia de Alimentos/métodos , Paladar , Aminoácidos/análise , Queijo/análise , Queijo/microbiologia , Quimosina/metabolismo , Microbiologia de Alimentos , Conservação de Alimentos/métodos , Análise de Componente Principal , Proteínas/metabolismo , Distribuição Aleatória , Fatores de Tempo
3.
J Dairy Sci ; 89(3): 812-23, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16507673

RESUMO

The objective of this study was to investigate the lysis of a highly autolytic strain of Lactococcus lactis ssp. cremoris AM2 in a model cheese made from concentrated ultrafiltered milk. From the same initial ultrafiltered retentate inoculated with L. lactis AM2, 5 cheeses were made by the addition of rennet at different pH values (6.6, 6.2, 5.8, 5.4, and 5.2). Lysis was monitored by measurement of the release of lactate dehydrogenase, an intracellular marker enzyme, and by immunodetection of intracellular proteins with species-specific antibodies. Confocal scanning laser microscopy (CSLM) was used to investigate the cheese microstructure by staining for protein and fat. Dual staining with a bacterial viability kit with CSLM was performed to reveal the integrity and localization of the bacterial cells. Levels of soluble calcium significantly increased when the pH at which the rennet was added decreased. In cheese renneted at pH 6.6, CSLM revealed an open porous structure containing a dense protein network with fat globules of different sizes distributed in the aqueous phase. In cheese renneted at pH 5.2, the protein network was homogeneous, with a less dense protein network, and an even distribution of fat globules. On d 1, bacterial cells were organized into colonies in cheese renneted at pH 6.6, whereas in cheeses renneted at pH 5.2, bacteria were evenly dispersed as single cells throughout the protein network. Lysis was detected on d 1 in cheeses renneted at high pH values and continued to increase throughout ripening, whereas induction of lysis was delayed in cheeses renneted at lower pH values until the end of ripening. This study demonstrates that alterations in the microstructure of the cheese and the distribution of cells play a role in lysis induction of L. lactis AM2.


Assuntos
Queijo/microbiologia , Quimosina/metabolismo , Manipulação de Alimentos/métodos , Lactococcus lactis/fisiologia , Leite , Aminoácidos/análise , Animais , Bacteriólise , Eletroforese em Gel de Poliacrilamida , Concentração de Íons de Hidrogênio , Immunoblotting , L-Lactato Desidrogenase/análise , Microscopia Confocal , Ultrafiltração
4.
J Dairy Sci ; 88(4): 1288-300, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15778296

RESUMO

The appearance of undesirable bitter taste in Ragusano cheese was investigated by comparing the composition of 9 bitter cheeses with that of 9 reference cheeses of good quality by means of chemical, electrophoretic, and chromatographic analyses. Rates of proteolysis were significantly affected in cheeses of different quality. Primary proteolysis, as measured by pH 4.6-soluble N, was significantly greater in bitter cheeses compared with reference samples. Urea-PAGE profiles showed an almost complete breakdown of caseins in bitter cheeses and the further degradation of primary peptides into smaller compounds not detectable by this technique. Cheeses with defects had significantly lower levels of secondary proteolysis as reflected by the percentage of pH 4.6-soluble N soluble in 12% trichloroacetic acid and the amounts of total free amino acids. Peptides separated by reversed phase-HPLC revealed that the large and significant differences in peptide profiles of the soluble fractions between bitter and reference cheeses were mainly due to a much higher proportion of hydrophobic peptides in the former. The occurrence of bitterness in Ragusano cheese was therefore attributable to unbalanced levels of proteolysis and peptidolysis. Extensive degradation of caseins and primary peptides by activities of proteases produced large amounts of small- and medium-sized hydrophobic peptides that were not adequately removed by peptidases of microflora and therefore accumulated in cheese potentially contributing to its bitter taste. The presence of these compounds in bitter cheeses was related to high salt-in-moisture and low moisture contents that limited the enzymatic activities of microflora important in secondary proteolysis. Combining salt-in-moisture and the ratio of hydrophobic-to-hydrophilic soluble peptides resulted in the best logistic partial least squares regression model predicting cheese quality. Although bitterness is known to be rarely encountered in cheese at salt-in-moisture levels >5.0, all of the bitter cheeses analyzed in this study had salt-in-moisture levels much greater than this value. According to the logistic model, a risk of bitterness development may exist for cheeses with a midrange (5 to 10%) salt-in-moisture content but with an inadequate level of secondary proteolysis.


Assuntos
Queijo/análise , Tecnologia de Alimentos , Proteínas do Leite/metabolismo , Peptídeos/metabolismo , Paladar , Caseínas/análise , Caseínas/química , Caseínas/metabolismo , Queijo/normas , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese em Gel de Poliacrilamida/métodos , Concentração de Íons de Hidrogênio , Proteínas do Leite/análise , Peptídeos/análise , Peptídeos/química , Controle de Qualidade , Fatores de Tempo , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA