Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1384606, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660315

RESUMO

Introduction: Ultraviolet (UV) light is a known trigger of both cutaneous and systemic disease manifestations in lupus patients. Lupus skin has elevated expression of type I interferons (IFNs) that promote increased keratinocyte (KC) death after UV exposure. The mechanisms by which KC cell death is increased by type I IFNs are unknown. Methods: Here, we examine the specific cell death pathways that are activated in KCs by type I IFN priming and UVB exposure using a variety of pharmacological and genetic approaches. Mice that overexpress Ifnk in the epidermis were exposed to UVB light and cell death was measured. RNA-sequencing from IFN-treated KCs was analyzed to identify candidate genes for further analysis that could drive enhanced cell death responses after UVB exposure. Results: We identify enhanced activation of caspase-8 dependent apoptosis, but not other cell death pathways, in type I IFN and UVB-exposed KCs. In vivo, overexpression of epidermal Ifnk resulted in increased apoptosis in murine skin after UVB treatment. This increase in KC apoptosis was not dependent on known death ligands but rather dependent on type I IFN-upregulation of interferon regulatory factor 1 (IRF1). Discussion: These data suggest that enhanced sensitivity to UV light exhibited by lupus patients results from type I IFN priming of KCs that drives IRF1 expression resulting in caspase-8 activation and increased apoptosis after minimal exposures to UVB.


Assuntos
Caspase 8 , Interferon-alfa , Queratinócitos , Animais , Camundongos , Apoptose , Caspase 8/metabolismo , Caspase 8/genética , Fator Regulador 1 de Interferon/metabolismo , Fator Regulador 1 de Interferon/genética , Interferon-alfa/metabolismo , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Camundongos Endogâmicos C57BL , Raios Ultravioleta/efeitos adversos
2.
J Autoimmun ; 132: 102865, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35858957

RESUMO

Cutaneous lupus erythematosus (CLE) is an inflammatory and autoimmune skin condition that affects patients with systemic lupus erythematosus (SLE) and exists as an isolated entity without associated SLE. Flares of CLE, often triggered by exposure to ultraviolet (UV) light result in lost productivity and poor quality of life for patients and can be associated with trigger of systemic inflammation. In the past 10 years, the knowledge of CLE etiopathogenesis has grown, leading to promising targets for better therapies. Development of lesions likely begins in a pro-inflammatory epidermis, conditioned by excess type I interferon (IFN) production to undergo increased cell death and inflammatory cytokine production after UV light exposure. The reasons for this inflammatory predisposition are not well-understood, but may be an early event, as ANA + patients without criteria for autoimmune disease exhibit similar (although less robust) findings. Non-lesional skin of SLE patients also exhibits increased innate immune cell infiltration, conditioned by excess IFNs to release pro-inflammatory cytokines, and potentially increase activation of the adaptive immune system. Plasmacytoid dendritic cells are also found in non-lesional skin and may contribute to type I IFN production, although this finding is now being questioned by new data. Once the inflammatory cycle begins, lesional infiltration by numerous other cell populations ensues, including IFN-educated T cells. The heterogeneity amongst lesional CLE subtypes isn't fully understood, but B cells appear to discriminate discoid lupus erythematosus from other subtypes. Continued discovery will provide novel targets for additional therapeutic pursuits. This review will comprehensively discuss the contributions of tissue-specific and immune cell populations to the initiation and propagation of disease.


Assuntos
Lúpus Eritematoso Cutâneo , Lúpus Eritematoso Discoide , Lúpus Eritematoso Sistêmico , Humanos , Qualidade de Vida , Lúpus Eritematoso Cutâneo/diagnóstico , Lúpus Eritematoso Cutâneo/metabolismo , Pele/patologia
3.
Kidney Int ; 100(6): 1303-1315, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34352311

RESUMO

Kidney failure is common in patients with Coronavirus Disease-19 (COVID-19), resulting in increased morbidity and mortality. In an international collaboration, 284 kidney biopsies were evaluated to improve understanding of kidney disease in COVID-19. Diagnoses were compared to five years of 63,575 native biopsies prior to the pandemic and 13,955 allograft biopsies to identify diseases that have increased in patients with COVID-19. Genotyping for APOL1 G1 and G2 alleles was performed in 107 African American and Hispanic patients. Immunohistochemistry for SARS-CoV-2 was utilized to assess direct viral infection in 273 cases along with clinical information at the time of biopsy. The leading indication for native biopsy was acute kidney injury (45.4%), followed by proteinuria with or without concurrent acute kidney injury (42.6%). There were more African American patients (44.6%) than patients of other ethnicities. The most common diagnosis in native biopsies was collapsing glomerulopathy (25.8%), which was associated with high-risk APOL1 genotypes in 91.7% of cases. Compared to the five-year biopsy database, the frequency of myoglobin cast nephropathy and proliferative glomerulonephritis with monoclonal IgG deposits was also increased in patients with COVID-19 (3.3% and 1.7%, respectively), while there was a reduced frequency of chronic conditions (including diabetes mellitus, IgA nephropathy, and arterionephrosclerosis) as the primary diagnosis. In transplants, the leading indication was acute kidney injury (86.4%), for which rejection was the predominant diagnosis (61.4%). Direct SARS-CoV-2 viral infection was not identified. Thus, our multi-center large case series identified kidney diseases that disproportionately affect patients with COVID-19 and demonstrated a high frequency of APOL1 high-risk genotypes within this group, with no evidence of direct viral infection within the kidney.


Assuntos
Injúria Renal Aguda , COVID-19 , Apolipoproteína L1/genética , Humanos , Rim , Estudos Retrospectivos , SARS-CoV-2
4.
Kidney360 ; 2(11): 1770-1780, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-35372991

RESUMO

Background: Immune responses to vaccination are a known trigger for a new onset of glomerular disease or disease flare in susceptible individuals. Mass immunization against SARS-CoV-2 in the COVID-19 pandemic provides a unique opportunity to study vaccination-associated autoimmune kidney diseases. In the recent literature, there are several patient reports demonstrating a temporal association of SARS-CoV-2 immunization and kidney diseases. Methods: Here, we present a series of 29 cases of biopsy-proven glomerular disease in patients recently vaccinated against SARS-CoV-2 and identified patients who developed a new onset of IgA nephropathy, minimal change disease, membranous nephropathy, ANCA-associated GN, collapsing glomerulopathy, or diffuse lupus nephritis diagnosed on kidney biopsies postimmunization, as well as recurrent ANCA-associated GN. This included 28 cases of de novo GN within native kidney biopsies and one disease flare in an allograft. Results: The patients with collapsing glomerulopathy were of Black descent and had two APOL1 genomic risk alleles. A brief literature review of patient reports and small series is also provided to include all reported cases to date (n=52). The incidence of induction of glomerular disease in response to SARS-CoV-2 immunization is unknown; however, there was no overall increase in incidence of glomerular disease when compared with the 2 years prior to the COVID-19 pandemic diagnosed on kidney biopsies in our practice. Conclusions: Glomerular disease to vaccination is rare, although it should be monitored as a potential adverse event.


Assuntos
COVID-19 , Glomerulonefrite por IGA , Apolipoproteína L1 , Vacinas contra COVID-19/efeitos adversos , Glomerulonefrite por IGA/epidemiologia , Humanos , Pandemias , SARS-CoV-2 , Vacinação/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...