Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Res ; 84(7): 1013-1028, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294491

RESUMO

Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE: Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.


Assuntos
Adenocarcinoma , Citidina Desaminase , Inibidores da Síntese de Ácido Nucleico , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Citidina Desaminase/metabolismo , DNA , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Replicação do DNA , Inibidores da Síntese de Ácido Nucleico/uso terapêutico
2.
Mol Ther Methods Clin Dev ; 29: 162-172, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37063483

RESUMO

Pancreatic cancer remains one of the greatest challenges in oncology for which therapeutic intervention is urgently needed. We previously demonstrated that the intra-tumoral gene transfer of somatostatin receptor 2, to combat tumor aggressiveness, or of deoxycytidine kinase and uridylate monophosphate kinase, to sensitize to gemcitabine chemotherapy, has anti-tumoral potential in experimental models of cancer. Here, we describe the development of the CYL-02 non-viral gene therapy product that comprises a DNA-plasmid encoding for the three aforementioned genes, which expression is targeted to tumor cells, and complexed with polyethyleneimine non-viral vector. We performed pre-clinical toxicology, bio-distribution, and therapeutic activity studies of CYL-02 in two rodent models of pancreatic cancer. We found that CYL-02 is safe, does not increase gemcitabine toxicity, is rapidly cleared from blood following intravenous administration, and sequestered in tumors following intra-tumoral injection. CYL-02 drives the expression of therapeutic genes in cancer cells and strongly sensitizes tumor cells to gemcitabine, both in vitro and in vivo, with significant inhibition of tumor cells dissemination. This study was instrumental for the later use of CYL-02 in patients with advanced pancreatic cancer, demonstrating that rigorous and thorough preclinical investigations are informative for the clinical transfer of gene therapies against this disease.

3.
Mol Ther ; 30(4): 1553-1563, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35038581

RESUMO

Toll-like receptors (TLRs) are key players in the innate immune system. Recent studies have suggested that they may affect the growth of pancreatic cancer, a disease with no cure. Among them, TLR7 shows promise for therapy but may also promotes tumor growth. Thus, we aimed to clarify the therapeutic potential of TLR7 ligands in experimental pancreatic cancer models, to open the door for clinical applications. In vitro, we found that TLR7 ligands strongly inhibit the proliferation of both human and murine pancreatic cancer cells, compared with TLR2 agonists. Hence, TLR7 treatment alters cancer cells' cell cycle and induces cell death by apoptosis. In vivo, TLR7 agonist therapy significantly delays the growth of murine pancreatic tumors engrafted in immunodeficient mice. Remarkably, TLR7 ligands administration instead increases tumor growth and accelerates animal death when tumors are engrafted in immunocompetent models. Further investigations revealed that TLR7 agonists modulate the intratumoral content and phenotype of macrophages and that depleting such tumor-associated macrophages strongly hampers TLR7 agonist-induced tumor growth. Collectively, our findings shine a light on the duality of action of TLR7 agonists in experimental cancer models and call into question their use for pancreatic cancer therapy.


Assuntos
Neoplasias Pancreáticas , Receptor 7 Toll-Like , Animais , Humanos , Ligantes , Macrófagos/metabolismo , Glicoproteínas de Membrana , Camundongos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Microambiente Tumoral , Neoplasias Pancreáticas
4.
Hum Gene Ther ; 27(2): 184-92, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26731312

RESUMO

The vast majority (85%) of pancreatic ductal adenocarcinomas (PDACs) are discovered at too of a late stage to allow curative surgery. In addition, PDAC is highly resistant to conventional methods of chemotherapy and radiotherapy, which only offer a marginal clinical benefit. Consequently, the prognosis of this cancer is devastating, with a 5-year survival rate of less than 5%. In this dismal context, we recently demonstrated that PDAC gene therapy using nonviral vectors is safe and feasible, with early signs of efficacy in selected patients. Our next step is to transfer to the clinic HIV-1-based lentiviral vectors (LVs) that outshine other therapeutic vectors to treat experimental models of PDAC. However, a primary safety issue presented by LVs that may delay their use in patients is the risk of oncogenesis after vector integration in the host's cell DNA. Thus, we developed a novel anticancerous approach based on integrase-defective lentiviral vectors (IDLVs) and demonstrated that IDLVs can be successfully engineered to transiently deliver therapeutic genes to inhibit pancreatic cancer cells proliferation. This work stems for the use of therapeutic IDLVs for the management of PDAC, in forthcoming early phase gene therapy clinical trial for this disease with no cure.


Assuntos
Vetores Genéticos/química , Integrases/genética , Lentivirus/genética , Neoplasias Pancreáticas/terapia , Proteínas Virais/genética , Animais , Antineoplásicos/farmacologia , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Genes Reporter , Terapia Genética/métodos , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , HIV-1/genética , HIV-1/metabolismo , Humanos , Injeções Subcutâneas , Integrases/metabolismo , Lentivirus/metabolismo , Camundongos , Camundongos Nus , Mutação , Transplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Transplante Heterólogo , Proteínas Virais/metabolismo , Gencitabina , Neoplasias Pancreáticas
5.
Mol Ther ; 23(4): 779-89, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25586689

RESUMO

This phase 1 trial was aimed to determine the safety, pharmacokinetics, and preliminary clinical activity of CYL-02, a nonviral gene therapy product that sensitizes pancreatic cancer cells to chemotherapy. CYL-02 was administrated using endoscopic ultrasound in 22 patients with pancreatic cancer that concomitantly received chemotherapy (gemcitabine). The maximum-tolerated dose (MTD) exceeded the maximal feasible dose of CYL-02 and was not identified. Treatment-related toxicities were mild, without serious adverse events. Pharmacokinetic analysis revealed a dose-dependent increase in CYL-02 DNA exposure in blood and tumors, while therapeutic RNAs were detected in tumors. No objective response was observed, but nine patients showed stable disease up to 6 months following treatment and two of these patients experienced long-term survival. Panels of plasmatic microRNAs and proteins were identified as predictive of gene therapy efficacy. We demonstrate that CYL-02 nonviral gene therapy has a favorable safety profile and is well tolerated in patients. We characterize CYL-02 biodistribution and demonstrate therapeutic gene expression in tumors. Treated patients experienced stability of disease and predictive biomarkers of response to treatment were identified. These promising results warrant further evaluation in phase 2 clinical trial.


Assuntos
Terapia Genética , Neoplasias Pancreáticas/terapia , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Distribuição Tecidual
6.
Hum Gene Ther ; 26(2): 104-13, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25423447

RESUMO

As many other cancers, pancreatic ductal adenocarcinoma (PDAC) progression is associated with a series of hallmark changes for cancer cells to secure their own growth success. Yet, these very changes render cancer cells highly sensitive to viral infection. A promising strategy may rely on and exploit viral replication for tumor destruction, whereby infection of tumor cells by a replication-conditional virus may lead to cell destruction and simultaneous release of progeny particles that can spread and infect adjacent tumor cells, while sparing healthy tissues. In the present study, we used Myb34.5, a second-generation replication-conditional herpes simplex virus type 1 (HSV-1) mutant in which ICP6 gene expression is defective and expression of the HSV-1 γ134.5 gene is regulated by the cellular B-myb promoter. We found that B-myb is present in experimental PDAC and tumors, and is overexpressed in patients' tumors, as compared with normal adjacent pancreas. Myb34.5 replicates to high level in human PDAC cell lines and is associated with cell death by apoptosis. In experimental models of PDAC, mice receiving intratumoral Myb34.5 injections appeared healthy and tumor progression was inhibited, with evidence of tumor necrosis, hemorrhage, viral replication, and cancer cell death by apoptosis. Combining standard-of-care chemotherapy with Myb34.5 successfully led to a very impressive antitumoral effect that is rarely achieved in this experimental model, and resulted in a greater reduction in tumor growth than chemotherapy alone. These promising results warrant further evaluation in early phase clinical trial for patients diagnosed with PDAC for whom no effective treatment is available.


Assuntos
Carcinoma Ductal Pancreático/terapia , Proteínas de Ciclo Celular/genética , Herpesvirus Humano 1/genética , Terapia Viral Oncolítica/métodos , Neoplasias Pancreáticas/terapia , Transativadores/genética , Proteínas Virais/genética , Animais , Antineoplásicos/farmacologia , Apoptose , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Regulação da Expressão Gênica , Engenharia Genética , Herpesvirus Humano 1/metabolismo , Humanos , Injeções Intralesionais , Camundongos , Camundongos Nus , Transplante de Neoplasias , Pâncreas/patologia , Pâncreas/virologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Regiões Promotoras Genéticas , Transativadores/metabolismo , Carga Tumoral , Proteínas Virais/metabolismo , Gencitabina
7.
J Clin Gastroenterol ; 49(1): 50-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24798941

RESUMO

GOALS AND BACKGROUND: Mutation of the KRAS oncogene is present in 75% to 95% of pancreatic cancer tissues. This study aimed to evaluate whether endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA), combined with analysis of the KRAS mutation, improves the diagnosis of pancreatic cancer in cases of inconclusive or doubtful cytopathologic analysis. PATIENTS AND METHODS: We prospectively included 186 patients with a pancreatic mass (103 men; mean age: 62 y). Cytopathology and KRAS mutations, using TaqMan MGB allelic discrimination, were performed on EUS-FNA material. A final diagnosis was obtained from EUS-FNA analysis and/or a subsequent biopsy if necessary, and/or surgery, and follow-up: these were pancreatic adenocarcinoma (n=104), other malignant pancreatic tumors (n=22), and benign lesions (n=60, including 35 cases of chronic pancreatitis). RESULTS: Inconclusive or doubtful (low-grade dysplasia or atypia) cytopathology was found in 68 cases. Of these, 29 patients who had adenocarcinoma were subsequently diagnosed, including 19 cases with a former KRAS mutation. Sensitivity, specificity, positive and negative predictive values, and overall accuracy of cytopathology alone to diagnose adenocarcinoma were 73%, 100%, 100%, 75%, and 85%, respectively. When KRAS mutation analysis was combined with pathology, these values reached 88%, 99%, 99%, 89%, and 93%, respectively. The performance of EUS-FNA to diagnose malignancy was similarly improved after the KRAS-mutation assay (negative predictive value increased from 67% to 88%; accuracy increased from 85% to 94%). CONCLUSIONS: EUS-FNA plus KRAS-mutation analysis, using allelic discrimination, is accurate and improves the diagnosis of pancreatic adenocarcinoma when pathology is inconclusive or doubtful.


Assuntos
Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas ras/genética , Adulto , Idoso , Alelos , Análise Mutacional de DNA/métodos , Aspiração por Agulha Fina Guiada por Ultrassom Endoscópico , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Pancreatite Crônica/genética , Pancreatite Crônica/patologia , Valor Preditivo dos Testes , Estudos Prospectivos , Proteínas Proto-Oncogênicas p21(ras)
8.
J Biol Chem ; 289(51): 35593-604, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25355311

RESUMO

Pancreas transcription factor 1a (PTF1a) plays a crucial role in the early development of the pancreas and in the maintenance of the acinar cell phenotype. Several transcriptional mechanisms regulating expression of PTF1a have been identified. However, regulation of PTF1a protein stability and degradation is still unexplored. Here, we report that inhibition of proteasome leads to elevated levels of PTF1a and to the existence of polyubiquitinated forms of PTF1a. We used the Sos recruitment system, an alternative two-hybrid system method to detect protein-protein interactions in the cytoplasm and to map the interactome of PTF1a. We identified TRIP12 (thyroid hormone receptor-interacting protein 12), an E3 ubiquitin-protein ligase as a new partner of PTF1a. We confirmed PTF1a/TRIP12 interaction in acinar cell lines and in co-transfected HEK-293T cells. The protein stability of PTF1a is significantly increased upon decreased expression of TRIP12. It is reduced upon overexpression of TRIP12 but not a catalytically inactive TRIP12-C1959A mutant. We identified a region of TRIP12 required for interaction and identified lysine 312 of PTF1a as essential for proteasomal degradation. We also demonstrate that TRIP12 down-regulates PTF1a transcriptional and antiproliferative activities. Our data suggest that an increase in TRIP12 expression can play a part in PTF1a down-regulation and indicate that PTF1a/TRIP12 functional interaction may regulate pancreatic epithelial cell homeostasis.


Assuntos
Proteínas de Transporte/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células Acinares/metabolismo , Células Acinares/patologia , Animais , Western Blotting , Proteínas de Transporte/genética , Linhagem Celular Tumoral , Proliferação de Células , Citoplasma/metabolismo , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Neoplasias Pancreáticas/patologia , Ligação Proteica , Estabilidade Proteica , Proteólise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
9.
World J Gastroenterol ; 20(32): 11199-209, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25170204

RESUMO

Despite tremendous efforts from scientists and clinicians worldwide, pancreatic adenocarcinoma (PDAC) remains a deadly disease due to the lack of early diagnostic tools and reliable therapeutic approaches. Consequently, a majority of patients (80%) display an advanced disease that results in a low resection rate leading to an overall median survival of less than 6 months. Accordingly, robust markers for the early diagnosis and prognosis of pancreatic cancer, or markers indicative of survival and/or metastatic disease are desperately needed to help alleviate the dismal prognosis of this cancer. In addition, the discovery of new therapeutic targets is mandatory to design effective treatments. In this review, we will highlight the translational studies demonstrating that microRNAs may soon translate into clinical applications as long-awaited screening tools and therapeutic targets for PDAC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Ductal Pancreático/genética , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Animais , Biomarcadores Tumorais/sangue , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/mortalidade , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/terapia , Detecção Precoce de Câncer , Regulação Neoplásica da Expressão Gênica , Testes Genéticos , Humanos , MicroRNAs/sangue , Estadiamento de Neoplasias , Neoplasias Pancreáticas/sangue , Neoplasias Pancreáticas/mortalidade , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Valor Preditivo dos Testes , Fatores de Risco
10.
Am J Pathol ; 182(6): 1996-2004, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23578383

RESUMO

Tumor protein p53-induced nuclear protein 1 (TP53INP1) is involved in cell stress response. Its expression is lost at the pancreatic intraepithelial neoplasia 1b (PanIN1b)/PanIN2 stage of pancreatic carcinogenesis. Our objective was to determine whether TP53INP1 loss of expression contributes to pancreatic cancer formation in a conditional KrasG12D mouse model. We generated Kras-INP1KO mice using LSL-Kras(G12D/+);Pdx1-Cre(+/-) mice (Kras mice) and TP53INP1(-/-) mice. Analysis of pancreases during ageing shows that in the presence of activated Kras, TP53INP1 loss of expression accelerated PanIN formation and increased pancreatic injury and the number of high-grade lesions as compared with what occurs in Kras mice. Moreover, cystic lesions resembling intraductal papillary mucinous neoplasm (IPMN) were observed as early as 2 months of age. Remarkably, TP53INP1 is down-regulated in human IPMN. Activation of the small GTPase Rac1 shows that more oxidative stress is generated in Kras-INP1KO than in Kras mice pancreas despite elevated levels of the Nrf2 antioxidant regulator. We firmly establish the link between Kras-INP1KO pancreatic phenotype and oxidative stress with rescue of the phenotype by the antioxidant action of N-acetylcysteine. Our data provide in vivo functional demonstration that TP53INP1 deficiency accelerates progression of pancreatic cancer, underlining its role in the occurrence of IPMN and highlighting the importance of TP53INP1 in the control of oxidative status during development of pancreatic cancer.


Assuntos
Proteínas Nucleares/fisiologia , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Animais , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Regulação para Baixo/fisiologia , Humanos , Metaplasia/genética , Metaplasia/metabolismo , Camundongos , Camundongos Knockout , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Pâncreas/patologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo
11.
PLoS One ; 8(1): e55513, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23383211

RESUMO

MicroRNAs are small non-coding RNAs that physiologically modulate proteins expression, and regulate numerous cellular mechanisms. Alteration of microRNA expression has been described in cancer and is associated to tumor initiation and progression. The microRNA 148a (miR-148a) is frequently down-regulated in cancer. We previously demonstrated that its down-regulation by DNA hypermethylation is an early event in pancreatic ductal adenocarcinoma (PDAC) carcinogenesis, suggesting a tumor suppressive function. Here, we investigate the potential role of miR-148a over-expression in PDAC as a therapeutic tool. We first report the consequences of miR-148a over-expression in PDAC cell lines. We demonstrate that miR-148a over-expression has no dramatic effect on cell proliferation and cell chemo-sensitivity in four well described PDAC cell lines. We also investigate the modulation of protein expression by a global proteomic approach (2D-DIGE). We show that despite its massive over-expression, miR-148a weakly modulates protein expression, thus preventing the identification of protein targets in PDAC cell lines. More importantly, in vivo data demonstrate that modulating miR-148a expression either in the epithelia tumor cells and/or in the tumor microenvironment does not impede tumor growth. Taken together, we demonstrate herein that miR-148a does not impact PDAC proliferation both in vitro and in vivo thus suggesting a weak potential as a therapeutic tool.


Assuntos
Carcinoma Ductal Pancreático/genética , Expressão Gênica , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Animais , Antimetabólitos Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Camundongos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/terapia , Proteoma , Proteômica , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
12.
Cancers (Basel) ; 6(1): 28-41, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24378751

RESUMO

KLF6 is ubiquitously expressed in human tissues and regulates many pathways such as differentiation, development, cellular proliferation, growth-related signal transduction, and apoptosis. We previously demonstrated that KLF6 expression is altered during liver carcinogenesis. More importantly, KLF6 invalidation results in cell cycle progression inhibition and apoptosis of liver cancer cells. On the other hand, enforced expression of KLF6 variant 2 (SV2) induces cancer cell death by apoptosis. Thus, we and others demonstrated that KLF6 and its splicing variants play a critical role in liver cancer. However, little is known on the mechanisms governing KLF6 expression in HCC. In the present work, we asked whether the 3' untranslated region (3'UTR) of the KLF6 mRNA may be responsible for regulation of KLF6 expression in HCC. We found that KLF6 mRNA stability was altered in liver-derived cell lines as compared to cervical cancer-derived cell lines and human embryonic fibroblasts. Interestingly, KLF6 mRNA was highly unstable in liver cancer-derived cell lines as compared to normal hepatocytes. We next cloned the KLF6 mRNA 3'UTR into luciferase-expressing vectors and found that gene expression and activity were strongly impaired in all liver-derived cell lines tested. In addition, we found that most the KLF6 3'UTR destabilisation activity resides between nt 1,835 and nt 2,615 of the KLF6 gene. Taken together, we provide the first steps towards better understanding of the regulation of KLF6 expression in HCC. Further work is needed to identify the factors that bind to KLF6 3'UTR to regulate its expression in liver cancer-derived cell lines.

13.
PLoS One ; 7(7): e34893, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22829864

RESUMO

Serotonin (5-HT) regulates different cardiac functions by acting directly on cardiomyocytes, fibroblasts and endothelial cells. Today, it is widely accepted that activated platelets represent a major source of 5-HT. In contrast, a supposed production of 5-HT in the heart is still controversial. To address this issue, we investigated the expression and localization of 5-HT synthesizing enzyme tryptophan hydroxylase (TPH) and L-aromatic amino acid decarboxylase (AADC) in the heart. We also evaluated their involvement in cardiac production of 5-HT. TPH1 was weakly expressed in mouse and rat heart and appeared restricted to mast cells. Degranulation of mast cells by compound 48/80 did not modify 5-HT cardiac content in mice. Western blots and immunolabelling experiments showed an abundant expression of AADC in the mouse and rat heart and its co-localization with endothelial cells. Incubation of cardiac homogenate with the AADC substrate (5-hydroxy-L-tryptophan) 5-HTP or intraperitoneal injection of 5-HTP in mice significantly increased cardiac 5-HT. These effects were prevented by the AADC inhibitor benserazide. Finally, 5-HTP administration in mice increased phosphorylation of aortic nitric oxide synthase 3 at Ser (1177) as well as accumulation of nitrates in cardiac tissue. This suggests that the increase in 5-HT production by AADC leads to activation of endothelial and cardiac nitric oxide pathway. These data show that endothelial AADC plays an important role in cardiac synthesis of 5-HT and possibly in 5-HT-dependent regulation of nitric oxide generation.


Assuntos
Descarboxilases de Aminoácido-L-Aromático/metabolismo , Miocárdio/metabolismo , Nitratos/metabolismo , Serotonina/metabolismo , 5-Hidroxitriptofano/farmacologia , Animais , Inibidores das Descarboxilases de Aminoácidos Aromáticos , Western Blotting , Cromatografia Líquida de Alta Pressão , Coração/efeitos dos fármacos , Coração/embriologia , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Triptofano Hidroxilase/metabolismo
14.
Curr Genomics ; 12(1): 15-24, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21886451

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers worldwide. Despite significant progresses in the last decades, the origin of this cancer remains unclear and no efficient therapy exists. PDAC does not arise de novo: three remarkable different types of pancreatic lesions can evolve towards pancreatic cancer. These precursor lesions include: Pancreatic intraepithelial neoplasia (PanIN) that are microscopic lesions of the pancreas, Intraductal Papillary Mucinous Neoplasms (IPMN) and Mucinous Cystic Neoplasms (MCN) that are both macroscopic lesions. However, the cellular origin of these lesions is still a matter of debate. Classically, neoplasm initiation or progression is driven by several genetic and epigenetic alterations. The aim of this review is to assemble the current information on genetic mutations and epigenetic disorders that affect genes during pancreatic carcinogenesis. We will further discuss the interest of the genetic and epigenetic alterations for the diagnosis and prognosis of PDAC. Large genetic alterations (chromosomal deletion/amplification) and single point mutations are well described for carcinogenesis inducers. Mutations classically occur within key regions of the genome. Consequences are various and include activation of mitogenic pathways or silencing of apoptotic processes. Alterations of K-RAS, P16 and DPC4 genes are frequently observed in PDAC samples and have been described to arise gradually during carcinogenesis. DNA methylation is an epigenetic process involved in imprinting and X chromosome inactivation. Alteration of DNA methylation patterns leads to deregulation of gene expression, in the absence of mutation. Both genetic and epigenetic events influence genes and non-coding RNA expression, with dramatic effects on proliferation, survival and invasion. Besides improvement in our fundamental understanding of PDAC development, highlighting the molecular alterations that occur in pancreatic carcinogenesis could provide new clinical tools for early diagnosis of PDAC and the molecular basis for the development of new effective therapies.

15.
J Hepatol ; 53(5): 880-8, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20801538

RESUMO

BACKGROUND & AIMS: KLF6 protein is a transcription factor that plays important functions in hepatocellular carcinoma (HCC), which is one of the leading causes of death by cancer worldwide. Previous studies showed the existence of three splice variants of KLF6, termed SV1, SV2, and SV3. An increased SV1/KLF6 mRNA ratio in HCC was already described. In this study, we aimed to investigate the expression of the SV2 variant in HCC samples and its role in hepatic cells. METHODS: We measured the expression of the SV2 variant in HCC and adjacent tissue samples by q-RT-PCR. We established IHH and HepG2 stable cell lines over-expressing the SV2 variant and measured cell growth and apoptotic rate. RESULTS: We observed a reduced expression of the SV2 variant in HCC samples versus surrounding tissues and normal liver. Interestingly, our findings demonstrate that the over-expression of the SV2 variant in IHH and HepG2 cells leads to a significant reduction of proliferation associated with cell death by apoptosis. We further demonstrate that the SV2 expression leads to an induction of the cell-cycle-controlling p21(CIP/WAF1) and the pro-apoptotic Bax genes, mediated by the p53 protein. We show further that the SV2 expression in IHH and HepG2 cells induces their sensitivity to the anti-cancer drug, gemcitabine. CONCLUSION: We reveal a reduced expression of the SV2 variant of KLF6 in HCC samples and describe anti-proliferative and pro-apoptotic functions for this variant in hepatic cells.


Assuntos
Apoptose , Carcinoma Hepatocelular/patologia , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Neoplasias Hepáticas/patologia , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/fisiologia , Processamento Alternativo , Carcinoma Hepatocelular/tratamento farmacológico , Proliferação de Células , Inibidor de Quinase Dependente de Ciclina p21/análise , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Regulação para Baixo , Células Hep G2 , Humanos , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/antagonistas & inibidores , Neoplasias Hepáticas/tratamento farmacológico , Isoformas de Proteínas , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Proteína Supressora de Tumor p53/fisiologia , Proteína X Associada a bcl-2/análise , Gencitabina
16.
Clin Chem ; 56(7): 1107-18, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20431052

RESUMO

BACKGROUND: The poor prognosis of pancreatic ductal adenocarcinoma (PDAC) is accounted for by the absence of early diagnostic markers and effective treatments. MicroRNAs inhibit the translation of their target mRNAs. The production of microRNAs is strongly altered in cancers, but the causes of these alterations are only partially known. DNA hypermethylation is a major cause of gene inactivation in cancer. Our aims were to identify microRNAs whose gene expression is inactivated by hypermethylation in PDAC and to determine whether this hypermethylation-mediated repression is an early event during pancreatic carcinogenesis. We also sought to investigate whether these differentially methylated regions can serve as a diagnostic marker for PDAC. METHODS: MicroRNA production was measured by microarray hybridization and reverse-transcription quantitative PCR. The level of DNA methylation was measured by bisulfite mapping and semiquantitative methylation-specific PCR. RESULTS: We identified 29 microRNAs encoded by genes whose expression is potentially inactivated by DNA hypermethylation. We focused our study on microRNA 148a (miR-148a) and found its production to be repressed, not only in PDAC samples but also in preneoplastic pancreatic intraepithelial neoplasia (PanIN) lesions. More importantly, we found that hypermethylation of the DNA region encoding miR-148a is responsible for its repression, which occurs in PanIN preneoplastic lesions. Finally, we show that the hypermethylated DNA region encoding miR-148a can serve as an ancillary marker for the differential diagnosis of PDAC and chronic pancreatitis (CP). CONCLUSIONS: We show that the hypermethylation of the DNA region encoding miR-148a is responsible for its repression in PDAC precursor lesions and can be a useful tool for the differential diagnosis of PDAC and CP.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico , Metilação de DNA , MicroRNAs/biossíntese , Neoplasias Pancreáticas/diagnóstico , Animais , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Diagnóstico Diferencial , Regulação para Baixo , Inativação Gênica , Humanos , Camundongos , Camundongos Mutantes , MicroRNAs/genética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Pancreatite Crônica/diagnóstico , Reação em Cadeia da Polimerase , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia
17.
PLoS One ; 4(8): e6629, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19680561

RESUMO

In synucleinopathies, including Parkinson's disease, partially ubiquitylated alpha-synuclein species phosphorylated on serine 129 (P(S129)-alpha-synuclein) accumulate abnormally. Parkin, an ubiquitin-protein ligase that is dysfunctional in autosomal recessive parkinsonism, protects against alpha-synuclein-mediated toxicity in various models.We analyzed the effects of Parkin deficiency in a mouse model of synucleinopathy to explore the possibility that Parkin and alpha-synuclein act in the same biochemical pathway. Whether or not Parkin was present, these mice developed an age-dependent neurodegenerative disorder preceded by a progressive decline in performance in tasks predictive of sensorimotor dysfunction. The symptoms were accompanied by the deposition of P(S129)-alpha-synuclein but not P(S87)-alpha-synuclein in neuronal cell bodies and neuritic processes throughout the brainstem and the spinal cord; activation of caspase 9 was observed in 5% of the P(S129)-alpha-synuclein-positive neurons. As in Lewy bodies, ubiquitin-immunoreactivity, albeit less abundant, was invariably co-localized with P(S129)-alpha-synuclein. During late disease stages, the disease-specific neuropathological features revealed by ubiquitin- and P(S129)-alpha-synuclein-specific antibodies were similar in mice with or without Parkin. However, the proportion of P(S129)-alpha-synuclein-immunoreactive neuronal cell bodies and neurites co-stained for ubiquitin was lower in the absence than in the presence of Parkin, suggesting less advanced synucleinopathy. Moreover, sensorimotor impairment and manifestation of the neurodegenerative phenotype due to overproduction of human alpha-synuclein were significantly delayed in Parkin-deficient mice.These findings raise the possibility that effective compensatory mechanisms modulate the phenotypic expression of disease in parkin-related parkinsonism.


Assuntos
Modelos Animais de Doenças , Atividade Motora , Doença de Parkinson/fisiopatologia , Sinucleínas/metabolismo , Ubiquitina-Proteína Ligases/genética , Animais , Sequência de Bases , Primers do DNA , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Fosforilação , Reação em Cadeia da Polimerase
18.
Curr Genomics ; 10(5): 353-60, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20119532

RESUMO

Krüppel-like factor (KLF) family members share a three C2H2 zinc finger DNA binding domain, and are involved in cell proliferation and differentiation control in normal as in pathological situations. Studies over the past several years support a significant role for this family of transcription factors in carcinogenesis. KLFs can both activate and repress genes that participate in cell-cycle regulation. Among them, many up-regulated genes are inhibitors of proliferation, whereas genes that promote cell proliferation are repressed. However, several studies do present KLFs as positive regulator of cell proliferation. KLFs can be deregulated in multiple cancers either by loss of heterozygosity (LOH), somatic mutation or transcriptional silencing by promoter hypermethylation. Accordingly, KLF expression was shown to mediate growth inhibition when ectopically expressed in multiple cancer-derived cell lines through the inhibition of a number of key oncogenic signaling pathways, and to revert the tumorogenic phenotype in vivo. Taken together, these observations suggest that KLFs act as tumor suppressor. However, in some occasion, KLFs could act as tumor promoters, depending on "cellular context". Thus, this review will discuss the roles and the functions of KLF family members in carcinogenesis, with a special focus on cancers from epithelial origin.

19.
J Neurochem ; 107(6): 1660-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19094059

RESUMO

Alcoholism is a complex disorder involving, among others, the serotoninergic (5-HT) system, mainly regulated by 5-HT(1A) autoreceptors in the dorsal raphe nucleus. 5-HT(1A) autoreceptor desensitization induced by chronic 5-HT reuptake inactivation has been associated with a decrease in ethanol intake in mice. We investigated here whether, conversely, chronic ethanol intake could induce 5-HT(1A) autoreceptor supersensitivity, thereby contributing to the maintenance of high ethanol consumption. C57BL/6J mice were subjected to a progressive ethanol intake procedure in a free-choice paradigm (3-10% ethanol versus tap water; 21 days) and 5-HT(1A) autoreceptor functional state was assessed using different approaches. Acute administration of the 5-HT(1A) receptor agonist ipsapirone decreased the rate of tryptophan hydroxylation in striatum, and this effect was significantly larger (+75%) in mice that drank ethanol than in those drinking water. Furthermore, ethanol intake produced both an increased potency (+45%) of ipsapirone to inhibit the firing of 5-HT neurons, and a raise (+35%) in 5-HT(1A) autoreceptor-mediated stimulation of [(35)S]GTP-gamma-S binding in the dorsal raphe nucleus. These data showed that chronic voluntary ethanol intake in C57BL/6J mice induced 5-HT(1A) autoreceptor supersensitivity, at the origin of a 5-HT neurotransmission deficit, which might be causally related to the addictive effects of ethanol intake.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Alcoolismo/fisiopatologia , Preferências Alimentares/efeitos dos fármacos , Receptor 5-HT1A de Serotonina/metabolismo , 5-Hidroxitriptofano/metabolismo , Potenciais de Ação/efeitos dos fármacos , Alcoolismo/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Temperatura Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Guanosina 5'-O-(3-Tiotrifosfato)/farmacologia , Ácido Hidroxi-Indolacético/metabolismo , Hipotermia/induzido quimicamente , Hipotermia/fisiopatologia , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Pirimidinas/farmacologia , Núcleos da Rafe/citologia , Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Triptofano/metabolismo
20.
Int J Neuropsychopharmacol ; 11(8): 1149-62, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18611291

RESUMO

Although numerous studies investigated the mechanisms underlying 3,4-methylenedioxymethamphetamine (MDMA)-induced neurotoxicity, little is known about its long-term functional consequences on 5-HT neurotransmission in mice. This led us to evaluate the delayed effects of MDMA exposure on the 5-HT system, using in-vitro and in-vivo approaches in both 5-HTT wild-type and knock-out mice. Acute MDMA in-vitro application on slices of the dorsal raphe nucleus (DRN) induced concentration-dependent 5-HT release and 5-HT cell firing inhibition. Four weeks after MDMA administration (20 mg/kg b.i.d for 4 d), a 2-fold increase in the potency of the 5-HT1A receptor agonist ipsapirone to inhibit the discharge of DRN 5-HT neurons and a larger hypothermic response to 8-OH-DPAT were observed in MDMA- compared to saline-treated mice. This adaptive 5-HT1A autoreceptor supersensitivity was associated with decreases in 5-HT levels but no changes of [3H]citalopram binding in brain. Long-term MDMA treatment also induced a 30% decrease in BrdU labelling of proliferating hippocampal cells and an increased immobility duration in the forced swim test suggesting a depressive-like behaviour induced by MDMA treatment. All these effects were abolished in 5-HTT-/- knock-out mice. These data indicated that, in mice, MDMA administration induced a delayed adaptive supersensitivity of 5-HT1A autoreceptors in the DRN, a deficit in hippocampal cell proliferation and a depressive-like behaviour. These 5-HTT-dependent effects, opposite to those of antidepressants, might contribute to MDMA-induced mood disorders.


Assuntos
Alucinógenos/farmacologia , Hipocampo/citologia , N-Metil-3,4-Metilenodioxianfetamina/farmacologia , Serotoninérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/fisiologia , Serotonina/fisiologia , 8-Hidroxi-2-(di-n-propilamino)tetralina/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Citalopram/metabolismo , Eletrofisiologia , Feminino , Elevação dos Membros Posteriores/psicologia , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Injeções Intraperitoneais , Masculino , Membranas/efeitos dos fármacos , Membranas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Técnicas de Patch-Clamp , Núcleos da Rafe/citologia , Núcleos da Rafe/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/efeitos dos fármacos , Receptor 5-HT2A de Serotonina/genética , Receptor 5-HT2A de Serotonina/fisiologia , Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Natação/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...