Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
2.
Sci Data ; 10(1): 195, 2023 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-37031232

RESUMO

We describe the Queensland Twin Adolescent Brain (QTAB) dataset and provide a detailed methodology and technical validation to facilitate data usage. The QTAB dataset comprises multimodal neuroimaging, as well as cognitive and mental health data collected in adolescent twins over two sessions (session 1: N = 422, age 9-14 years; session 2: N = 304, 10-16 years). The MRI protocol consisted of T1-weighted (MP2RAGE), T2-weighted, FLAIR, high-resolution TSE, SWI, resting-state fMRI, DWI, and ASL scans. Two fMRI tasks were added in session 2: an emotional conflict task and a passive movie-watching task. Outside of the scanner, we assessed cognitive function using standardised tests. We also obtained self-reports of symptoms for anxiety and depression, perceived stress, sleepiness, pubertal development measures, and risk and protective factors. We additionally collected several biological samples for genomic and metagenomic analysis. The QTAB project was established to promote health-related research in adolescence.


Assuntos
Desenvolvimento do Adolescente , Encéfalo , Adolescente , Criança , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Estudos Longitudinais , Imageamento por Ressonância Magnética , Queensland , Gêmeos
3.
Nat Med ; 29(4): 936-949, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37076741

RESUMO

Autism omics research has historically been reductionist and diagnosis centric, with little attention paid to common co-occurring conditions (for example, sleep and feeding disorders) and the complex interplay between molecular profiles and neurodevelopment, genetics, environmental factors and health. Here we explored the plasma lipidome (783 lipid species) in 765 children (485 diagnosed with autism spectrum disorder (ASD)) within the Australian Autism Biobank. We identified lipids associated with ASD diagnosis (n = 8), sleep disturbances (n = 20) and cognitive function (n = 8) and found that long-chain polyunsaturated fatty acids may causally contribute to sleep disturbances mediated by the FADS gene cluster. We explored the interplay of environmental factors with neurodevelopment and the lipidome, finding that sleep disturbances and unhealthy diet have a convergent lipidome profile (with potential mediation by the microbiome) that is also independently associated with poorer adaptive function. In contrast, ASD lipidome differences were accounted for by dietary differences and sleep disturbances. We identified a large chr19p13.2 copy number variant genetic deletion spanning the LDLR gene and two high-confidence ASD genes (ELAVL3 and SMARCA4) in one child with an ASD diagnosis and widespread low-density lipoprotein-related lipidome derangements. Lipidomics captures the complexity of neurodevelopment, as well as the biological effects of conditions that commonly affect quality of life among autistic people.


Assuntos
Transtorno do Espectro Autista , Transtorno Autístico , Transtornos do Sono-Vigília , Criança , Humanos , Transtorno Autístico/genética , Transtorno do Espectro Autista/genética , Lipidômica , Qualidade de Vida , Austrália/epidemiologia , Transtornos do Sono-Vigília/genética , Transtornos do Sono-Vigília/complicações , DNA Helicases , Proteínas Nucleares , Fatores de Transcrição
4.
Twin Res Hum Genet ; 25(3): 115-128, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35856184

RESUMO

In this prospective study of mental health, we examine the influence of three interrelated traits - perceived stress, rumination, and daytime sleepiness - and their association with symptoms of anxiety and depression in early adolescence. Given the known associations between these traits, an important objective is to determine the extent to which they may independently predict anxiety/depression symptoms. Twin pairs from the Queensland Twin Adolescent Brain (QTAB) project were assessed on two occasions (N = 211 pairs aged 9-14 years at baseline and 152 pairs aged 10-16 years at follow-up). Linear regression models and quantitative genetic modeling were used to analyze the data. Prospectively, perceived stress, rumination, and daytime sleepiness accounted for 8-11% of the variation in later anxiety/depression; familial influences contributed strongly to these associations. However, only perceived stress significantly predicted change in anxiety/depression, accounting for 3% of variance at follow-up after adjusting for anxiety/depression at baseline, although it did not do so independently of rumination and daytime sleepiness. Bidirectional effects were found between all traits over time. These findings suggest an underlying architecture that is shared, to some degree, by all traits, while the literature points to hypothalamic-pituitary-adrenal (HPA) axis and/or circadian systems as potential sources of overlapping influence and possible avenues for intervention.


Assuntos
Depressão , Distúrbios do Sono por Sonolência Excessiva , Adolescente , Ansiedade/genética , Ansiedade/psicologia , Depressão/genética , Distúrbios do Sono por Sonolência Excessiva/psicologia , Humanos , Estudos Prospectivos , Estresse Psicológico/genética , Estresse Psicológico/psicologia
5.
Twin Res Hum Genet ; 25(3): 129-139, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35791873

RESUMO

The hippocampus is a complex brain structure with key roles in cognitive and emotional processing and with subregion abnormalities associated with a range of disorders and psychopathologies. Here we combine data from two large independent young adult twin/sibling cohorts to obtain the most accurate estimates to date of genetic covariation between hippocampal subfield volumes and the hippocampus as a single volume. The combined sample included 2148 individuals, comprising 1073 individuals from 627 families (mean age = 22.3 years) from the Queensland Twin IMaging (QTIM) Study, and 1075 individuals from 454 families (mean age = 28.8 years) from the Human Connectome Project (HCP). Hippocampal subfields were segmented using FreeSurfer version 6.0 (CA4 and dentate gyrus were phenotypically and genetically indistinguishable and were summed to a single volume). Multivariate twin modeling was conducted in OpenMx to decompose variance into genetic and environmental sources. Bivariate analyses of hippocampal formation and each subfield volume showed that 10%-72% of subfield genetic variance was independent of the hippocampal formation, with greatest specificity found for the smaller volumes; for example, CA2/3 with 42% of genetic variance being independent of the hippocampus; fissure (63%); fimbria (72%); hippocampus-amygdala transition area (41%); parasubiculum (62%). In terms of genetic influence, whole hippocampal volume is a good proxy for the largest hippocampal subfields, but a poor substitute for the smaller subfields. Additive genetic sources accounted for 49%-77% of total variance for each of the subfields in the combined sample multivariate analysis. In addition, the multivariate analyses were sufficiently powered to identify common environmental influences (replicated in QTIM and HCP for the molecular layer and CA4/dentate gyrus, and accounting for 7%-16% of total variance for 8 of 10 subfields in the combined sample). This provides the clearest indication yet from a twin study that factors such as home environment may influence hippocampal volumes (albeit, with caveats).


Assuntos
Hipocampo , Imageamento por Ressonância Magnética , Irmãos , Gêmeos , Adulto , Encéfalo , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Gêmeos/genética , Adulto Jovem
6.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767757

RESUMO

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Assuntos
Transtorno Autístico/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Adolescente , Fatores Etários , Transtorno Autístico/diagnóstico , Comportamento , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Humanos , Masculino , Fenótipo , Filogenia , Especificidade da Espécie
7.
Psychol Sci ; 32(8): 1183-1197, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34323639

RESUMO

On average, men and women differ in brain structure and behavior, raising the possibility of a link between sex differences in brain and behavior. But women and men are also subject to different societal and cultural norms. We navigated this challenge by investigating variability of sex-differentiated brain structure within each sex. Using data from the Queensland Twin IMaging study (n = 1,040) and Human Connectome Project (n = 1,113), we obtained data-driven measures of individual differences along a male-female dimension for brain and behavior based on average sex differences in brain structure and behavior, respectively. We found a weak association between these brain and behavioral differences, driven by brain size. These brain and behavioral differences were moderately heritable. Our findings suggest that behavioral sex differences are, to some extent, related to sex differences in brain structure but that this is mainly driven by differences in brain size, and causality should be interpreted cautiously.


Assuntos
Conectoma , Caracteres Sexuais , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Gêmeos
8.
Sleep Adv ; 2(1): zpab018, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37193570

RESUMO

Study Objectives: To investigate the influence of genetic and environmental factors on sleep-wake behaviors across adolescence. Methods: Four hundred and ninety-five participants (aged 9-17; 55% females), including 93 monozygotic and 117 dizygotic twin pairs, and 75 unmatched twins, wore an accelerometry device and completed a sleep diary for 2 weeks. Results: Individual differences in sleep onset, wake time, and sleep midpoint were influenced by both additive genetic (44%-50% of total variance) and shared environmental (31%-42%) factors, with a predominant genetic influence for sleep duration (62%) and restorative sleep (43%). When stratified into younger (aged 9-14) and older (aged 16-17) subsamples, genetic sources were more prominent in older adolescents. The moderate correlation between sleep duration and midpoint (rP = -.43, rG = .54) was attributable to a common genetic source. Sleep-wake behaviors on school and nonschool nights were correlated (rP = .44-.72) and influenced by the same genetic and unique environmental factors. Genetic sources specific to night-type were also identified, for all behaviors except restorative sleep. Conclusions: There were strong genetic influences on sleep-wake phenotypes, particularly on sleep timing, in adolescence. Moreover, there may be common genetic influences underlying both sleep and circadian rhythms. The differences in sleep-wake behaviors on school and nonschool nights could be attributable to genetic factors involved in reactivity to environmental context.

9.
Neuroimage ; 215: 116781, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32278894

RESUMO

The hippocampus is a brain region critical for learning and memory, and is also implicated in several neuropsychiatric disorders that show sex differences in prevalence, symptom expression, and mean age of onset. On average, males have larger hippocampal volumes than females, but findings are inconclusive after adjusting for overall brain size. Although the hippocampus is a heterogenous structure, few studies have focused on sex differences in the hippocampal subfields - with little consensus on whether there are regionally specific sex differences in the hippocampus after adjusting for brain size, or whether it is important to adjust for total hippocampal volume (HPV). Here, using two young adult cohorts from the Queensland Twin IMaging study (QTIM; N â€‹= â€‹727) and the Human Connectome Project (HCP; N â€‹= â€‹960), we examined differences between males and females in the volumes of 12 hippocampal subfields, extracted using FreeSurfer 6.0. After adjusting the subfield volumes for either HPV or brain size (brain segmentation volume (BSV)) using four controlling methods (allometric, covariate, residual and matching), we estimated the percentage difference of the sex effect (males versus females) and Cohen's d using hierarchical general linear models. Males had larger volumes compared to females in the parasubiculum (up to 6.04%; Cohen's d â€‹= â€‹0.46) and fimbria (up to 8.75%; d â€‹= â€‹0.54) after adjusting for HPV. These sex differences were robust across the two cohorts and multiple controlling methods, though within cohort effect sizes were larger for the matched approach, due to the smaller sub-sample. Additional sex effects were identified in the HCP cohort and combined (QTIM and HCP) sample (hippocampal fissure (up to 6.79%), presubiculum (up to 3.08%), and hippocampal tail (up to -0.23%)). In contrast, no sex differences were detected for the volume of the cornu ammonis (CA)2/3, CA4, Hippocampus-Amygdala Transition Area (HATA), or the granule cell layer of the dentate gyrus (GCDG). These findings show that, independent of differences in HPV, there are regionally specific sex differences in the hippocampus, which may be most prominent in the fimbria and parasubiculum. Further, given sex differences were less consistent across cohorts after controlling for BSV, adjusting for HPV rather than BSV may benefit future studies. This work may help in disentangling sex effects, and provide a better understanding of the implications of sex differences for behaviour and neuropsychiatric disorders.


Assuntos
Hipocampo/anatomia & histologia , Hipocampo/fisiologia , Caracteres Sexuais , Adulto , Conectoma , Feminino , Hipocampo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Gêmeos , Adulto Jovem
10.
Brain Struct Funct ; 224(8): 2805-2821, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31428865

RESUMO

Comparing estimates of the amount of genetic and environmental variance for different brain structures may elucidate differences in the genetic architecture or developmental constraints of individual brain structures. However, most studies compare estimates of relative genetic (heritability) and environmental variance in brain structure, which do not reflect differences in absolute variance between brain regions. Here we used a population sample of young adult twins and singleton siblings of twins (n = 791; M = 23 years, Queensland Twin IMaging study) to estimate the absolute genetic and environmental variance, standardised by the phenotypic mean, in the size of cortical, subcortical, and ventricular brain structures. Mean-standardised genetic variance differed widely across structures [23.5-fold range 0.52% (hippocampus) to 12.28% (lateral ventricles)], but the range of estimates within cortical, subcortical, or ventricular structures was more moderate (two to fivefold range). There was no association between mean-standardised and relative measures of genetic variance (i.e., heritability) in brain structure volumes. We found similar results in an independent sample (n = 1075, M = 29 years, Human Connectome Project). These findings open important new lines of enquiry: namely, understanding the bases of these variance patterns, and their implications regarding the genetic architecture, evolution, and development of the human brain.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Interação Gene-Ambiente , Adulto , Conectoma , Feminino , Humanos , Masculino , Característica Quantitativa Herdável , Gêmeos Dizigóticos , Gêmeos Monozigóticos , Adulto Jovem
11.
IEEE/ACM Trans Comput Biol Bioinform ; 16(5): 1508-1514, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31135366

RESUMO

Genome-wide association studies (GWAS) link full genome data to a handful of traits. However, in neuroimaging studies, there is an almost unlimited number of traits that can be extracted for full image-wide big data analyses. Large populations are needed to achieve the necessary power to detect statistically significant effects, emphasizing the need to pool data across multiple studies. Neuroimaging consortia, e.g., ENIGMA and CHARGE, are now analyzing MRI data from over 30,000 individuals. Distributed processing protocols extract harmonized features at each site, and pool together only the cohort statistics using meta analysis to avoid data sharing. To date, such MRI projects have focused on single measures such as hippocampal volume, yet voxelwise analyses (e.g., tensor-based morphometry; TBM) may help better localize statistical effects. This can lead to $10^{13}$1013 tests for GWAS and become underpowered. We developed an analytical framework for multi-site TBM by performing multi-channel registration to cohort-specific templates. Our results highlight the reliability of the method and the added power over alternative options while preserving single site specificity and opening the doors for well-powered image-wide genome-wide discoveries.


Assuntos
Biologia Computacional/métodos , Estudo de Associação Genômica Ampla/métodos , Neuroimagem/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , Encéfalo/diagnóstico por imagem , Bases de Dados Factuais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Metanálise como Assunto , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Adulto Jovem
12.
Front Genet ; 10: 195, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30949193

RESUMO

The aim of this study was to examine whether phonemic decoding skill (deficits of which characterize dyslexia) shares genetic and/or environmental covariance with scholastic abilities independent of general intelligence. Non-word reading ability, verbal and non-verbal IQ, and standardized academic achievement (Queensland Core Skills Test; QCST) were measured in Australian twins (up to 876 twin pairs and 80 singleton twins). Multivariate genetic analysis showed the presence of a general genetic factor, likely reflecting crystallized ability, which accounted for 45-76% of phenotypic variance in QCST scores, 62% of variance in Verbal IQ, 23% of variance in Performance IQ, and 19% of variance in phonological reading ability. The phonemic decoding genetic factor (explaining 48% of variance in phonemic decoding) was negatively associated with mathematical achievement scores (0.4%). Shared effects of common environment did not explain the relationship between reading ability and academic achievement beyond those also influencing IQ. The unique environmental reading factor (accounting for 26% of variance) influenced academic abilities related to written expression. Future research will need to address whether these reading-specific genetic and unique environment relationships arise from causal effects of reading on scholastic abilities, or whether both share a common influence, such as pleiotropic genes/environmental factors.

13.
Twin Res Hum Genet ; 22(1): 1-3, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30661510

RESUMO

We recently reported an association of offspring educational attainment with polygenic risk scores (PRS) computed on parent's non-transmitted alleles for educational attainment using the second GWAS meta-analysis article on educational attainment published by the Social Science Genetic Association Consortium. Here we test the replication of these findings using a more powerful PRS from the third GWAS meta-analysis article by the Consortium. Each of the key findings of our previous paper is replicated using this improved PRS (N = 2335 adolescent twins and their genotyped parents). The association of children's attainment with their own PRS increased substantially with the standardized effect size, moving from ß = 0.134, 95% CI = 0.079, 0.188 for EA2, to ß = 0.223, 95% CI = 0.169, 0.278, p < .001, for EA3. Parent's PRS again predicted the socioeconomic status (SES) they provided to their offspring and increased from ß = 0.201, 95% CI = 0.147, 0.256 to ß = 0.286, 95% CI = 0.239, 0.333. Importantly, the PRS for alleles not transmitted to their offspring - therefore acting via the parenting environment - was increased in effect size from ß = 0.058, 95% CI = 0.003, 0.114 to ß = 0.067, 95% CI = 0.012, 0.122, p = .016. As previously found, this non-transmitted genetic effect was fully accounted for by parental SES. The findings reinforce the conclusion that genetic effects of parenting are substantial, explain approximately one-third the magnitude of an individual's own genetic inheritance and are mediated by parental socioeconomic competence.


Assuntos
Escolaridade , Estudo de Associação Genômica Ampla , Adolescente , Feminino , Humanos , Masculino , Fatores Socioeconômicos , Gêmeos
14.
Cereb Cortex ; 29(3): 952-962, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29377989

RESUMO

Quantifying the genetic architecture of the cerebral cortex is necessary for understanding disease and changes to the brain across the lifespan. Prior work shows that both surface area (SA) and cortical thickness (CT) are heritable. However, we do not yet understand the extent to which region-specific genetic factors (i.e., independent of global effects) play a dominant role in the regional patterning or inter-regional associations across the cortex. Using a population sample of young adult twins (N = 923), we show that the heritability of SA and CT varies widely across regions, generally independent of measurement error. When global effects are controlled for, we detected a complex pattern of genetically mediated clusters of inter-regional associations, which varied between hemispheres. There were generally weak associations between the SA of different regions, except within the occipital lobe, whereas CT was positively correlated within lobar divisions and negatively correlated across lobes, mostly due to genetic covariation. These findings were replicated in an independent sample of twins and siblings (N = 698) from the Human Connectome Project. The different genetic contributions to SA and CT across regions reveal the value of quantifying sources of covariation to appreciate the genetic complexity of cortical structures.


Assuntos
Córtex Cerebral/anatomia & histologia , Interação Gene-Ambiente , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
15.
Nat Genet ; 50(7): 912-919, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29942086

RESUMO

Intelligence is highly heritable1 and a major determinant of human health and well-being2. Recent genome-wide meta-analyses have identified 24 genomic loci linked to variation in intelligence3-7, but much about its genetic underpinnings remains to be discovered. Here, we present a large-scale genetic association study of intelligence (n = 269,867), identifying 205 associated genomic loci (190 new) and 1,016 genes (939 new) via positional mapping, expression quantitative trait locus (eQTL) mapping, chromatin interaction mapping, and gene-based association analysis. We find enrichment of genetic effects in conserved and coding regions and associations with 146 nonsynonymous exonic variants. Associated genes are strongly expressed in the brain, specifically in striatal medium spiny neurons and hippocampal pyramidal neurons. Gene set analyses implicate pathways related to nervous system development and synaptic structure. We confirm previous strong genetic correlations with multiple health-related outcomes, and Mendelian randomization analysis results suggest protective effects of intelligence for Alzheimer's disease and ADHD and bidirectional causation with pleiotropic effects for schizophrenia. These results are a major step forward in understanding the neurobiology of cognitive function as well as genetically related neurological and psychiatric disorders.


Assuntos
Inteligência/genética , Adolescente , Encéfalo/fisiologia , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla/métodos , Humanos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas
16.
Hum Brain Mapp ; 39(11): 4183-4195, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29947131

RESUMO

Oscillatory activity is crucial for information processing in the brain, and has a long history as a biomarker for psychopathology. Variation in oscillatory activity is highly heritable, but current understanding of specific genetic influences remains limited. We performed the largest genome-wide association study to date of oscillatory power during eyes-closed resting electroencephalogram (EEG) across a range of frequencies (delta 1-3.75 Hz, theta 4-7.75 Hz, alpha 8-12.75 Hz, and beta 13-30 Hz) in 8,425 subjects. Additionally, we performed KGG positional gene-based analysis and brain-expression analyses. GABRA2-a known genetic marker for alcohol use disorder and epilepsy-significantly affected beta power, consistent with the known relation between GABAA interneuron activity and beta oscillations. Tissue-specific SNP-based imputation of gene-expression levels based on the GTEx database revealed that hippocampal GABRA2 expression may mediate this effect. Twenty-four genes at 3p21.1 were significant for alpha power (FDR q < .05). SNPs in this region were linked to expression of GLYCTK in hippocampal tissue, and GNL3 and ITIH4 in the frontal cortex-genes that were previously implicated in schizophrenia and bipolar disorder. In sum, we identified several novel genetic variants associated with oscillatory brain activity; furthermore, we replicated and advanced understanding of previously known genes associated with psychopathology (i.e., schizophrenia and alcohol use disorders). Importantly, these psychopathological liability genes affect brain functioning, linking the genes' expression to specific cortical/subcortical brain regions.


Assuntos
Encéfalo/fisiopatologia , Eletroencefalografia , Transtornos Mentais/genética , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Estudos de Coortes , Feminino , Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Transtornos Mentais/metabolismo , Pessoa de Meia-Idade , Periodicidade , Polimorfismo de Nucleotídeo Único , Descanso , Adulto Jovem
17.
Twin Res Hum Genet ; 21(2): 73-83, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29530109

RESUMO

Research on environmental and genetic pathways to complex traits such as educational attainment (EA) is confounded by uncertainty over whether correlations reflect effects of transmitted parental genes, causal family environments, or some, possibly interactive, mixture of both. Thus, an aggregate of thousands of alleles associated with EA (a polygenic risk score; PRS) may tap parental behaviors and home environments promoting EA in the offspring. New methods for unpicking and determining these causal pathways are required. Here, we utilize the fact that parents pass, at random, 50% of their genome to a given offspring to create independent scores for the transmitted alleles (conventional EA PRS) and a parental score based on alleles not transmitted to the offspring (EA VP_PRS). The formal effect of non-transmitted alleles on offspring attainment was tested in 2,333 genotyped twins for whom high-quality measures of EA, assessed at age 17 years, were available, and whose parents were also genotyped. Four key findings were observed. First, the EA PRS and EA VP_PRS were empirically independent, validating the virtual-parent design. Second, in this family-based design, children's own EA PRS significantly predicted their EA (ß = 0.15), ruling out stratification confounds as a cause of the association of attainment with the EA PRS. Third, parental EA PRS predicted the SES environment parents provided to offspring (ß = 0.20), and parental SES and offspring EA were significantly associated (ß = 0.33). This would suggest that the EA PRS is at least as strongly linked to social competence as it is to EA, leading to higher attained SES in parents and, therefore, a higher experienced SES for children. In a full structural equation model taking account of family genetic relatedness across multiple siblings the non-transmitted allele effects were estimated at similar values; but, in this more complex model, confidence intervals included zero. A test using the forthcoming EA3 PRS may clarify this outcome. The virtual-parent method may be applied to clarify causality in other phenotypes where observational evidence suggests parenting may moderate expression of other outcomes, for instance in psychiatry.


Assuntos
Alelos , Educação , Interação Gene-Ambiente , Genótipo , Poder Familiar , Polimorfismo de Nucleotídeo Único , Gêmeos/genética , Adolescente , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino
18.
Sci Rep ; 7(1): 15351, 2017 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-29127340

RESUMO

Hair cortisol concentration (HCC) is a promising measure of long-term hypothalamus-pituitary-adrenal (HPA) axis activity. Previous research has suggested an association between HCC and psychological variables, and initial studies of inter-individual variance in HCC have implicated genetic factors. However, whether HCC and psychological variables share genetic risk factors remains unclear. The aims of the present twin study were to: (i) assess the heritability of HCC; (ii) estimate the phenotypic and genetic correlation between HPA axis activity and the psychological variables perceived stress, depressive symptoms, and neuroticism; using formal genetic twin models and molecular genetic methods, i.e. polygenic risk scores (PRS). HCC was measured in 671 adolescents and young adults. These included 115 monozygotic and 183 dizygotic twin-pairs. For 432 subjects PRS scores for plasma cortisol, major depression, and neuroticism were calculated using data from large genome wide association studies. The twin model revealed a heritability for HCC of 72%. No significant phenotypic or genetic correlation was found between HCC and the three psychological variables of interest. PRS did not explain variance in HCC. The present data suggest that HCC is highly heritable. However, the data do not support a strong biological link between HCC and any of the investigated psychological variables.


Assuntos
Depressão , Cabelo/metabolismo , Hidrocortisona , Modelos Genéticos , Herança Multifatorial , Estresse Psicológico , Adolescente , Adulto , Criança , Depressão/genética , Depressão/metabolismo , Feminino , Humanos , Hidrocortisona/genética , Hidrocortisona/metabolismo , Masculino , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Gêmeos Dizigóticos , Gêmeos Monozigóticos
19.
J Psychiatr Res ; 94: 148-155, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28715705

RESUMO

Lower levels of circulating iron have been associated with depression. Our objective was to investigate the phenotypic and genetic relationship between measures of circulating levels of iron (serum iron, transferrin, transferrin saturation, and ferritin) and depressive symptoms. Data were available from ongoing studies at QIMR Berghofer Medical Research Institute (QIMRB), including twin adolescents (mean age 15.1 years, standard deviation (SD) 3.2 years), and twin adults (mean age 23.2 years, SD 2.2 years). In the adolescent cohort, there were 3416 participants from 1688 families. In the adult cohort there were 9035 participants from 4533 families. We estimated heritabilities of, and phenotypic and genetic correlations between, traits. We conducted analyses that linked results from published large-scale genome-wide association studies (including iron and Major Depressive Disorder) with our study samples using single SNP and multi-SNP genetic risk score analyses, and LD score regression analyses. In both cohorts, measures of iron, transferrin, transferrin saturation, and log 10 of ferritin (L10Fer) were all highly heritable, while depressive measures were moderately heritable. In adolescents, depression measures were higher in those in the middle 10th versus top 10th percentile of transferrin saturation measures (p = 0.002). Genetic profile risk scores of the iron measures were not significantly associated with depression in study participants. LD score analyses showed no significant genetic relationship between iron and depression. Genetic factors strongly influence iron measures in adolescents and adults. Using several different strategies we find no evidence for a genetic contribution to the relationship between blood measures of iron and measures of depression.


Assuntos
Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/genética , Ferritinas/sangue , Predisposição Genética para Doença , Ferro/sangue , Sistema de Registros/estatística & dados numéricos , Transferrina/análise , Adolescente , Adulto , Austrália/epidemiologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Desequilíbrio de Ligação , Masculino , Queensland/epidemiologia , Adulto Jovem
20.
Hum Brain Mapp ; 38(9): 4444-4458, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28580697

RESUMO

Structural brain changes that occur during development and ageing are related to mental health and general cognitive functioning. Individuals differ in the extent to which their brain volumes change over time, but whether these differences can be attributed to differences in their genotypes has not been widely studied. Here we estimate heritability (h2 ) of changes in global and subcortical brain volumes in five longitudinal twin cohorts from across the world and in different stages of the lifespan (N = 861). Heritability estimates of brain changes were significant and ranged from 16% (caudate) to 42% (cerebellar gray matter) for all global and most subcortical volumes (with the exception of thalamus and pallidum). Heritability estimates of change rates were generally higher in adults than in children suggesting an increasing influence of genetic factors explaining individual differences in brain structural changes with age. In children, environmental influences in part explained individual differences in developmental changes in brain structure. Multivariate genetic modeling showed that genetic influences of change rates and baseline volume significantly overlapped for many structures. The genetic influences explaining individual differences in the change rate for cerebellum, cerebellar gray matter and lateral ventricles were independent of the genetic influences explaining differences in their baseline volumes. These results imply the existence of genetic variants that are specific for brain plasticity, rather than brain volume itself. Identifying these genes may increase our understanding of brain development and ageing and possibly have implications for diseases that are characterized by deviant developmental trajectories of brain structure. Hum Brain Mapp 38:4444-4458, 2017. © 2017 Wiley Periodicals, Inc.


Assuntos
Variação Biológica Individual , Encéfalo/diagnóstico por imagem , Modelos Genéticos , Característica Quantitativa Herdável , Encéfalo/anatomia & histologia , Encéfalo/crescimento & desenvolvimento , Interação Gene-Ambiente , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Modelos Neurológicos , Tamanho do Órgão/genética , Estudos em Gêmeos como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...