Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Host Microbe ; 31(2): 213-227.e9, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36603588

RESUMO

Diet and commensals can affect the development of autoimmune diseases like type 1 diabetes (T1D). However, whether dietary interventions are microbe-mediated was unclear. We found that a diet based on hydrolyzed casein (HC) as a protein source protects non-obese diabetic (NOD) mice in conventional and germ-free (GF) conditions via improvement in the physiology of insulin-producing cells to reduce autoimmune activation. The addition of gluten (a cereal protein complex associated with celiac disease) facilitates autoimmunity dependent on microbial proteolysis of gluten: T1D develops in GF animals monocolonized with Enterococcus faecalis harboring secreted gluten-digesting proteases but not in mice colonized with protease deficient bacteria. Gluten digestion by E. faecalis generates T cell-activating peptides and promotes innate immunity by enhancing macrophage reactivity to lipopolysaccharide (LPS). Gnotobiotic NOD Toll4-negative mice monocolonized with E. faecalis on an HC + gluten diet are resistant to T1D. These findings provide insights into strategies to develop dietary interventions to help protect humans against autoimmunity.


Assuntos
Diabetes Mellitus Tipo 1 , Microbiota , Camundongos , Animais , Humanos , Diabetes Mellitus Tipo 1/prevenção & controle , Glutens , Camundongos Endogâmicos NOD , Proteólise , Dieta
2.
J Autoimmun ; 127: 102795, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35101708

RESUMO

Experimental and clinical data suggest that a gluten-free diet attenuates the development of type 1 diabetes. A gluten-free diet changes the gut microbiota composition, and such microbial changes are expected to reduce the autoimmune responses. However, in experiments with laboratory mice, a gluten-free diet changes the gut microbiota differently under varying experimental settings, questioning the specific role of the gut microbes. Here we show that a maternal gluten-free diet until weaning of their pups, delayed type 1 diabetes in both dams (parent generation) and offspring (F1 generation) of untreated non-obese diabetic (NOD) mice and in mice treated with a full cocktail of antibiotics that eradicates most of the existing microbiota. Breeding a second (F2) generation of NOD mice, never exposed to the gluten-free diet or the associated microbial changes, also demonstrated a preventative effect on type 1 diabetes even though their parents (the F1 generation) had only been on a gluten-free diet very early in life. Collectively, the experimental data, thus, points towards microbiota-independent dietary protection. Furthermore, both the perinatal gluten-free diet and antibiotic treatment reduced inflammation in the salivary glands and improved glucose challenged beta cell function in the F1 offspring. However, in contrast to the autoimmune response in the pancreas, those changes appeared to be microbiota dependent, as they were missing in the antibiotic treated mice, and do, therefore, not seem to be related to the preventative effect on type 1 diabetes. Interestingly, adoptive transfer of splenocytes from gluten-free fed mice protected NOD.SCID mice from developing diabetes, demonstrating that the anti-diabetic effect of a gluten-free diet was based on early life changes in the evolving immune system. In particular, genes involved in regulation of lymphocyte activation, proliferation, and cell adhesion were highly expressed in the spleen in gluten-free fed mice at weaning compared to control fed mice of the F1 generation, which suggested that gluten promotes autoimmunity by inhibiting immune regulation, though the involvement of the specific genes needs further investigation. In conclusion, gluten-free diet reduces autoimmune inflammation in salivary glands and pancreas in NOD mice in a microbiota-dependent and -independent manner respectively, and has preventative effect on type 1 diabetes by modulating the systemic immune system.


Assuntos
Diabetes Mellitus Tipo 1 , Microbiota , Animais , Dieta Livre de Glúten , Feminino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Gravidez
3.
Front Immunol ; 12: 650621, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33815411

RESUMO

Epidemiological studies have long reported that perturbations of the childhood microbiome increase the risk of developing allergies, but a causal relationship with atopic dermatitis remains unclear. Here we colonized germ-free mice at birth or at one or eight week-of-age to investigate the role of prenatal and early postnatal microbial exposure on development of oxozolone-induced dermatitis later in life. We demonstrate that only one week delayed microbial colonization increased IgE levels and the total histological score of the inflamed ear compared to mice colonized throughout life. In parallel, several pro-inflammatory cytokines and chemokines were upregulated in the ear tissue demonstrating an enhanced immunological response following delayed postnatal colonization of the gut. In contrast, sensitivity to oxazolone-induced dermatitis was unaffected by the presence of a maternal microbiota during gestation. Mice colonized at eight week-of-age failed to colonize Rikenellaceae, a group of bacteria previously associated with a high-responding phenotype, and did not develop an immunological response to the same extent as the early colonized mice despite pronounced histopathological manifestations. The study provides proof-of-principle that the first intestinal colonizers of mice pups are crucial for the development of oxazolone-induced dermatitis later in life, and that the status of the maternal microbiota during pregnancy has no influence on the offspring's allergic immune response. This highlights an important window of opportunity following birth for microbiota-mediated interventions to prevent atopic responses later in life. How long such a window is open may vary between mice and humans considering species differences in the ontogeny of the immune system.


Assuntos
Dermatite Atópica/imunologia , Modelos Animais de Doenças , Microbioma Gastrointestinal/imunologia , Hipersensibilidade/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Animais , Bactérias/classificação , Bactérias/genética , Citocinas/imunologia , Citocinas/metabolismo , Dermatite Atópica/induzido quimicamente , Disbiose/genética , Disbiose/imunologia , Disbiose/microbiologia , Feminino , Microbioma Gastrointestinal/genética , Humanos , Imunoglobulina E/sangue , Imunoglobulina E/imunologia , Camundongos , Oxazolona , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , RNA Ribossômico 16S/genética
4.
Sci Rep ; 10(1): 21204, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273678

RESUMO

Atopic dermatitis is a chronic eczema commonly observed among children in Western countries. The gut microbiota is a significant factor in the pathogenesis, and ways to promote intestinal colonizers with anti-inflammatory capabilities are therefore favorable. The present study addressed the effects of a prebiotic, xylooligosaccharide (XOS), on the gut microbiota and ear inflammation in an oxazolone-induced dermatitis model in BALB/c mice. Mice were fed a XOS supplemented or a control diet throughout the experiment. Ear thickness and clinical skin inflammation were scored blindly after three weeks topical challenge with 0.4% oxazolone. The mice were divided into high and low responders to oxazolone-induced dermatitis based on clinical inflammation and histological evaluation of ear biopsies, and significantly fewer high responders were present in the XOS fed group. In addition, XOS fed mice had higher abundance of Prevotella spp. in their gut microbiota compared to the control fed mice. Serum IgE and ear tissue cytokine levels correlated significantly with the clinical scores, and with the abundance of Prevotella spp. The strong association between the low-responding phenotype and high abundance of Prevotella spp., indicates an alleviating effect of this intestinal colonizer in allergic sensitization. Prevotella should be considered as a relevant target for future microbiota-directed treatment strategies in atopic patients.


Assuntos
Dermatite Atópica/terapia , Suplementos Nutricionais , Microbioma Gastrointestinal , Oxazolona/toxicidade , Prebióticos , Prevotella/crescimento & desenvolvimento , Animais , Dermatite Atópica/sangue , Dermatite Atópica/induzido quimicamente , Modelos Animais de Doenças , Orelha , Feminino , Imunoglobulina E/sangue , Camundongos , Camundongos Endogâmicos BALB C
5.
Sci Rep ; 10(1): 7805, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32385373

RESUMO

Transplantation of germ-free (GF) mice with microbiota from mice or humans stimulates the intestinal immune system in disparate ways. We transplanted a human microbiota into GF C57BL/6 mice and a murine C57BL/6 microbiota into GF C57BL/6 mice and Swiss-Webster (SW) mice. Mice were bred to produce an offspring generation. 56% of the Operational Taxonomic Units (OTUs) present in the human donor microbiota established in the recipient mice, whereas 81% of the C57BL/6 OTUs established in the recipient C57BL/6 and SW mice. Anti-inflammatory bacteria such as Faecalibacterium and Bifidobacterium from humans were not transferred to mice. Expression of immune-related intestinal genes was lower in human microbiota-mice and not different between parent and offspring generation. Expression of intestinal barrier-related genes was slightly higher in human microbiota-mice. Cytokines and chemokines measured in plasma were differentially present in human and mouse microbiota-mice. Minor differences in microbiota and gene expression were found between transplanted mice of different genetics. It is concluded that important immune-regulating bacteria are lost when transplanting microbiota from humans to C57BL/6 mice, and that the established human microbiota is a weak stimulator of the murine immune system. The results are important for study design considerations in microbiota transplantation studies involving immunological parameters.


Assuntos
Bactérias/imunologia , Microbioma Gastrointestinal/imunologia , Sistema Imunitário/microbiologia , Transplantes/microbiologia , Animais , Bifidobacterium , Colo/microbiologia , Microbioma Gastrointestinal/genética , Vida Livre de Germes/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL
6.
Comp Med ; 70(1): 6-15, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31744592

RESUMO

Gut microbiota composition correlates strongly with essential disease parameters in the oxazolone-induced mouse model for atopic dermatitis. The phenotype of this model can be transferred to germ-free mice with a gut microbiota transplant to achieve high and low responding mice. Therefore, the production of high responding mice through gut microbiota transplantation may be seen as a tool to reduce group sizes or increase power in intervention studies by increasing effect size. We sought to determine whether high responding mice respond to a common treatment in the same way as low responding mice. We hypothesized that while high responding mice would exhibit a higher clinical score than low responding mice before treatment, the clinical parameters would be similar in both groups after betamethasone treatment. Dermatitis was induced with oxazolone in barrier bred Swiss Webster mice, and a high responding and a low responding donor was selected based upon clinical and pathologic scores, as confirmed by monitoring a range of ear tissue cytokines. Feces from these donors were transplanted to pregnant germ-free Swiss Webster dams, and subsequently to their offspring. Although the overall effect of betamethasone on the clinical dermatitis score and ear thickness was rather small, the high responding recipients had significantly higher clinical dermatitis score and ear thickness than the low responding recipients before treatment, and these differences vanished after betamethasone treatment. We conclude that high responding recipients can be treated to a clinical level comparable with the low responding recipients.


Assuntos
Betametasona/administração & dosagem , Dermatite Atópica/terapia , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Animais , Dermatite Atópica/patologia , Orelha/patologia , Transplante de Microbiota Fecal , Feminino , Masculino , Gravidez , Distribuição Aleatória
7.
Diabetologia ; 62(9): 1689-1700, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31139852

RESUMO

AIMS/HYPOTHESIS: Adopting a diet containing indigestible fibre compounds such as prebiotics to fuel advantageous bacteria has proven beneficial for alleviating inflammation. The effect of the microbial changes on autoimmunity, however, remains unknown. We studied the effects of prebiotic xylooligosaccharides (XOS) on pancreatic islet and salivary gland inflammation in NOD mice and tested whether these were mediated by the gut microbiota. METHODS: Mother and offspring mice were fed an XOS-supplemented diet until diabetes onset or weaning and were compared with a control-fed group. Diabetes incidence was monitored, insulitis and sialadenitis were scored in histological sections from adult mice, and several metabolic and immune variables were analysed in mice before the development of diabetes. Gut barrier function was assessed using an in vivo FITC-dextran permeability test. The importance of XOS-mediated gut microbial changes were evaluated in antibiotic-treated mice fed either XOS or control diet or given a faecal microbiota transplant from test animals. RESULTS: Diabetes onset was delayed in the XOS-fed mice, which also had fewer cellular infiltrations in their pancreatic islets and salivary glands. Interestingly, insulitis was most reduced in the XOS-fed groups when the mice were also treated with an antibiotic cocktail. There was no difference in sialadenitis between the dietary groups treated with antibiotics; the mice were protected by microbiota depletion regardless of diet. Faecal microbiota transplantation was not able to transfer protection. No major differences in glucose-insulin regulation, glucagon-like peptide-1, or short-chain fatty acid production were related to the XOS diet. The XOS diet did, however, reduce gut permeability markers in the small and large intestine. This was accompanied by a more anti-inflammatory environment locally and systemically, dominated by a shift from M1 to M2 macrophages, a higher abundance of activated regulatory T cells, and lower levels of induction of natural killer T cells and cytotoxic T cells. CONCLUSIONS/INTERPRETATION: Prebiotic XOS have microbiota-dependent effects on salivary gland inflammation and microbiota-independent effects on pancreatic islet pathology that are accompanied by an improved gut barrier that seems able to heighten control of intestinal diabetogenic antigens that have the potential to penetrate the mucosa to activate autoreactive immune responses.


Assuntos
Microbioma Gastrointestinal/fisiologia , Prebióticos , Animais , Autoimunidade/fisiologia , Suplementos Nutricionais , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Glucuronatos/uso terapêutico , Camundongos , Camundongos Endogâmicos NOD , Oligossacarídeos/uso terapêutico
8.
Res Vet Sci ; 123: 195-203, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30682583

RESUMO

Lipopolysaccharides (LPS) from Gram negative bacteria are generally present in laboratory animal chow diets in unknown amounts, which has been correlated to significant immunological differences between animals receiving diets with either low or high "naturally" occurring LPS content. LPS in the blood stream has been linked to glucose intolerance through Toll-like receptor mediated release of pro-inflammatory cytokines, metabolic endotoxemia, adipose tissue inflammation. LPS uptake increases when co-administered with fat, therefore uncontrolled LPS levels in a high-fat diet may increase variation in development of disease when high-fat diets are used to induce obesity and type 2 diabetes. Three experiments were conducted, in which C57BL/6NTac mice received high-fat (60%) or low fat (10%) diets with or without LPS for 8 or 20 weeks investigating the short and long term effects. Three different doses of LPS were used to investigate dosage effect, and ampicillin to isolate the effect of dietary LPS. Dietary LPS increased LPS levels in the blood stream, and affected the level of glycated haemoglobin (HbA1c), a key parameter in this model, in a dose dependant manner (p < 0.05). There was a strong tendency toward slower glucose uptake in the LPS supplemented groups once obesity was established, but the differences disappeared after 20 weeks. A high-fat diet slightly increased serum LPS and altered ileal expression of il10 and tnfa (p < 0.05). In conclusion, LPS seems to affect the glucose metabolism in a time-dose dependant manner, and uncontrolled variation in LPS levels of a diet may therefore increase inter-study variation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Lipopolissacarídeos/toxicidade , Obesidade/induzido quimicamente , Tecido Adiposo/metabolismo , Animais , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Hemoglobinas Glicadas/metabolismo , Inflamação/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
9.
J Crohns Colitis ; 12(12): 1459-1474, 2018 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-30137286

RESUMO

BACKGROUND AND AIMS: Epithelial expression of the insulin receptor in the colon has previously been reported to correlate with extent of colonic inflammation. However, the impact of insulin signalling in the intestinal mucosa is still unknown. Here, we investigated the effects of inactivating the epithelial insulin receptor in the intestinal tract, in an experimental model of inflammation-induced colorectal cancer. METHODS: The mice were generated by utilizing the intestinal- and epithelial-specific villin promoter and the Cre-Lox technology. All mice included in the cohorts were generated by crossing [vil-Cre-INSR+/-] × [INSRfl/fl] to obtain [vil-Cre-INSR-/-], and their floxed littermates [INSRfl/fl] served as the control group. For the intervention study, phosphate-buffered saline with or without insulin was instilled rectally in anaesthetized wild-type mice with chemically induced colitis. RESULTS: We found higher endoscopic colitis scores together with potentiated colonic tumorigenesis in the knockout mice. Furthermore, we showed that topically administered insulin in inflamed colons of wild-type mice reduced inflammation-induced weight loss and improved remission in a dose-dependent manner. Mice receiving rectal insulin enemas exhibited lower colitis endoscopic scores and reduced cyclooxygenase 2 mRNA expression, and developed significantly fewer and smaller tumours compared with the control group receiving phosphate-buffered saline only. CONCLUSIONS: Rectal insulin therapy could potentially be a novel treatment, targeting the epithelial layer to enhance mucosal healing in ulcerated areas. Our findings open up new possibilities for combination treatments to synergize with the existing anti-inflammatory therapies.


Assuntos
Colite , Neoplasias Colorretais , Inflamação , Insulina/administração & dosagem , Mucosa Intestinal , Administração Retal , Animais , Colite/tratamento farmacológico , Colite/etiologia , Colite/imunologia , Colite/patologia , Neoplasias Colorretais/etiologia , Neoplasias Colorretais/patologia , Neoplasias Colorretais/prevenção & controle , Troca Genética , Modelos Animais de Doenças , Endoscopia/métodos , Hipoglicemiantes/administração & dosagem , Inflamação/tratamento farmacológico , Inflamação/patologia , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Camundongos , Proteínas dos Microfilamentos/genética , Receptor de Insulina/imunologia
10.
Res Vet Sci ; 118: 357-364, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29653396

RESUMO

Ampicillin is applied in rodents to induce a temporarily depleted microbiota. To elucidate whether bacteria are just temporarily suppressed or fully eliminated, and how this affects the re-colonisation process, we compared the microbiota and immune system in conventionally housed untreated mice with newly weaned ampicillin treated mice subsequently housed in either a microbe containing environment or in an isolator with only host associated suppressed bacteria to recolonize the gut. Two weeks ampicillin treatment induced a seemingly germ-free state with no bacterial DNA to reveal. Four weeks after treatment caeca were still significantly enlarged in both treated groups, but bacteria re-appeared even in isolator housed mice. While some suppressed bacteria were able to recover and even dominate the community, the abundances and composition were far from the untreated mice and differed between isolator and conventional housing. The treatment reduced the innate cytokine expressions at least for three weeks after treatment, and had a non-lasting reducing impact on the regulatory T cells, and a more lasting impact on the natural killer T cells. We conclude that temporary ampicillin treatment suppresses the majority but does not eliminate all the gut microbiota members. The re-colonisation process is as such influenced by both suppressed host associated bacteria and by environmental bacteria. Treated mice do not re-obtain a complex gut microbiota comparable to untreated mice, and the immune response and gut morphology reflect this. This is a concern when comparing host parameters sensitive to microbial regulation after an antibiotic-induced temporarily "germ-free" state.


Assuntos
Ampicilina/farmacologia , Antibacterianos/farmacologia , Microbioma Gastrointestinal/imunologia , Animais , Citocinas , Camundongos , Microbiota
11.
J Immunol ; 197(3): 701-5, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27324130

RESUMO

Polyglandular autoimmune inflammation accompanies type 1 diabetes (T1D) in NOD mice, affecting organs like thyroid and salivary glands. Although commensals are not required for T1D progression, germ-free (GF) mice had a very low degree of sialitis, which was restored by colonization with select microbial lineages. Moreover, unlike T1D, which is blocked in mice lacking MyD88 signaling adaptor under conventional, but not GF, housing conditions, sialitis did not develop in MyD88(-/-) GF mice. Thus, microbes and MyD88-dependent signaling are critical for sialitis development. The severity of sialitis did not correlate with the degree of insulitis in the same animal and was less sensitive to a T1D-reducing diet, but it was similar to T1D with regard to microbiota-dependent sexual dimorphism. The unexpected distinction in requirements for the microbiota for different autoimmune pathologies within the same organism is crucial for understanding the nature of microbial involvement in complex autoimmune disorders, including human autoimmune polyglandular syndromes.


Assuntos
Diabetes Mellitus Tipo 1/microbiologia , Microbiota/fisiologia , Poliendocrinopatias Autoimunes/microbiologia , Sialadenite/microbiologia , Animais , Modelos Animais de Doenças , Feminino , Vida Livre de Germes , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/imunologia , Caracteres Sexuais
12.
Gut Microbes ; 7(1): 68-74, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26744774

RESUMO

We recently investigated the applicability of antibiotic-treated recipient mice for transfer of different gut microbiota profiles. With this addendum we elaborate on perspectives and limitations of using antibiotics as an alternative to germ-free (GF) technology in microbial transplantation studies, and we speculate on the housing effect. It is possible to transfer host phenotypes via fecal transplantation to antibiotic-treated animals, but problems with reproducibility, baseline values, and antibiotic resistance genes should be considered. GF animals maintained in isolators still seem to be the best controlled models for long-term microbial transplantation, but antibiotic-treated recipients are also commonly utilized. We identify a need for systematic experiments investigating the stability of microbial transplantations by addressing 1) the recipient status as either GF, antibiotic-treated or specific pathogen free and 2) different levels of protected housing systems. In addition, the developmental effect of microbes on host physiological functions should be evaluated in the different scenarios.


Assuntos
Antibacterianos/administração & dosagem , Transplante de Microbiota Fecal/métodos , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Organismos Livres de Patógenos Específicos , Animais , Camundongos , Modelos Animais , Reprodutibilidade dos Testes
13.
Birth Defects Res C Embryo Today ; 105(4): 278-95, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26663871

RESUMO

Chronic inflammatory diseases are on the rise in the Westernized world. This rise has been correlated to a range of environmental factors, such as birth mode, rural versus urban living conditions, and use of antibiotics. Such environmental factors also influence early life gut microbiota (GM) colonization and maturation--and there is growing evidence that the negative effects of these factors on human health are mediated via GM alterations. Colonization of the gut initiates priming of the immune system from birth, driving tolerance towards non-harmful microorganisms and dietary antigens and proper reactions towards invading pathogens. This early colonization is crucial for the establishment of a healthy GM, and throughout life the balanced interaction of GM and immune system is a key element in maintaining health. An immune system out of balance increases the risk for later life inflammatory diseases. Animal models are indispensable in the studies of GM influence on disease mechanisms and progression, and focus points include studies of GM modification during pregnancy and perinatal life. Here, we present an overview of animal studies which have contributed to our understanding of GM functions in early life and how alterations affect risk and expression of certain inflammatory diseases with juvenile onset, including interventions, such as birth mode, antibiotics, and probiotics.


Assuntos
Modelos Animais de Doenças , Microbioma Gastrointestinal/fisiologia , Sistema Imunitário/fisiologia , Inflamação/microbiologia , Doenças Inflamatórias Intestinais/microbiologia , Animais , Feminino , Humanos , Gravidez
14.
Sci Rep ; 4: 5922, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-25082483

RESUMO

Transferring gut microbiota from one individual to another may enable researchers to "humanize" the gut of animal models and transfer phenotypes between species. To date, most studies of gut microbiota transfer are performed in germ-free mice. In the studies presented, it was tested whether an antibiotic treatment approach could be used instead. C57BL/6 mice were treated with ampicillin prior to inoculation at weaning or eight weeks of age with gut microbiota from lean or obese donors. The gut microbiota and clinical parameters of the recipients was characterized one and six weeks after inoculation. The results demonstrate, that the donor gut microbiota was introduced, established, and changed the gut microbiota of the recipients. Six weeks after inoculation, the differences persisted, however alteration of the gut microbiota occurred with time within the groups. The clinical parameters of the donor phenotype were partly transmissible from obese to lean mice, in particularly ß cell hyperactivity in the obese recipients. Thus, a successful inoculation of gut microbiota was not age dependent in order for the microbes to colonize, and transferring different microbial compositions to conventional antibiotic-treated mice was possible at least for a time period during which the microbiota may permanently modulate important host functions.


Assuntos
Ampicilina/farmacologia , Antibacterianos/farmacologia , Trato Gastrointestinal/microbiologia , Microbiota , Animais , Feminino , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Obesos
15.
J Immunol ; 193(3): 1213-22, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24951818

RESUMO

Delivery mode has been associated with long-term changes in gut microbiota composition and more recently also with changes in the immune system. This has further been suggested to link Cesarean section (C-section) with an increased risk for development of immune-mediated diseases such as type 1 diabetes. In this study, we demonstrate that both C-section and cross-fostering with a genetically distinct strain influence the gut microbiota composition and immune key markers in mice. Gut microbiota profiling by denaturing gradient gel electrophoresis and 454/FLX-based 16S rRNA gene amplicon sequencing revealed that mice born by C-section had a distinct bacterial profile at weaning characterized by higher abundance of Bacteroides and Lachnospiraceae, and less Rikenellaceae and Ruminococcus. No clustering according to delivery method as determined by principal component analysis of denaturing gradient gel electrophoresis profiles was evident in adult mice. However, the adult C-section-born mice had lower proportions of Foxp3(+) regulatory T cells, tolerogenic CD103(+) dendritic cells, and less Il10 gene expression in mesenteric lymph nodes and spleens. This demonstrates long-term systemic effect on the regulatory immune system that was also evident in NOD mice, a model of type 1 diabetes, born by C-section. However, no effect of delivery mode was seen on diabetes incidence or insulitis development. In conclusion, the first exposure to microorganisms seems to be crucial for the early life gut microbiota and priming of regulatory immune system in mice, and mode of delivery strongly influences this.


Assuntos
Imunidade Adaptativa , Cesárea , Intestinos/imunologia , Intestinos/microbiologia , Microbiota/imunologia , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/microbiologia , Animais , Bacteroides/imunologia , Bacteroides/isolamento & purificação , Cesárea/métodos , Clostridium/imunologia , Clostridium/isolamento & purificação , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Experimental/microbiologia , Diabetes Mellitus Experimental/patologia , Feminino , Intestinos/citologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Mucosa/citologia , Mucosa/imunologia , Mucosa/microbiologia , Ruminococcus/imunologia , Ruminococcus/isolamento & purificação , Linfócitos T Reguladores/citologia
16.
FEBS Lett ; 588(22): 4234-43, 2014 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-24746688

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease ultimately leading to destruction of insulin secreting ß-cells in the pancreas. Genetic susceptibility plays an important role in T1D etiology, but even mono-zygotic twins only have a concordance rate of around 50%, underlining that other factors than purely genetic are involved in disease development. Here we review the influence of dietary and environmental factors on T1D development in humans as well as animal models. Even though data are still inconclusive, there are strong indications that gut microbiota dysbiosis plays an important role in T1D development and evidence from animal models suggests that gut microbiota manipulation might prove valuable in future prevention of T1D in genetically susceptible individuals.


Assuntos
Diabetes Mellitus Tipo 1/etiologia , Diabetes Mellitus Tipo 1/microbiologia , Dieta/efeitos adversos , Trato Gastrointestinal/microbiologia , Microbiota , Animais , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/virologia , Trato Gastrointestinal/parasitologia , Trato Gastrointestinal/virologia , Humanos
17.
PLoS One ; 8(5): e62578, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23658749

RESUMO

BACKGROUND: A number of human diseases such as obesity and diabetes are associated with changes or imbalances in the gut microbiota (GM). Laboratory mice are commonly used as experimental models for such disorders. The introduction and dynamic development of next generation sequencing techniques have enabled detailed mapping of the GM of both humans and animal models. Nevertheless there is still a significant knowledge gap regarding the human and mouse common GM core and thus the applicability of the latter as an animal model. The aim of the present study was to identify inter- and intra-individual differences and similarities between the GM composition of particular mouse strains and humans. METHODOLOGY/PRINCIPAL FINDINGS: A total of 1509428 high quality tag-encoded partial 16S rRNA gene sequences determined using 454/FLX Titanium (Roche) pyro-sequencing reflecting the GM composition of 32 human samples from 16 individuals and 88 mouse samples from three laboratory mouse strains commonly used in diabetes research were analyzed using Principal Coordinate Analysis (PCoA), nonparametric multivariate analysis of similarity (ANOSIM) and alpha diversity measures. A reliable cutoff threshold for low abundant taxa estimated on the basis of the present study is recommended for similar trials. CONCLUSIONS/SIGNIFICANCE: Distinctive quantitative differences in the relative abundance of most taxonomic groups between the examined categories were found. All investigated mouse strains clustered separately, but with a range of shared features when compared to the human GM. However, both mouse fecal, caecal and human fecal samples shared to a large extent not only representatives of the same phyla, but also a substantial fraction of common genera, where the number of shared genera increased with sequencing depth. In conclusion, the GM of mice and humans is quantitatively different (in terms of abundance of specific phyla and species) but share a large qualitatively similar core.


Assuntos
Bactérias/genética , Microbiota/genética , Animais , Fezes/microbiologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Análise Multivariada , Análise de Componente Principal , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Estatísticas não Paramétricas
18.
Gut Microbes ; 4(3): 241-5, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23549457

RESUMO

We recently investigated how post-natal microbial gut colonization is important for the development of the immune system, especially in the systemic compartments. This addendum presents additional data which in accordance with our previous findings show that early life microbial colonization is critical for a fine-tuned immune homeostasis to develop also in the intestinal environment. A generalized reduction in the expression of immune signaling related genes in the small intestine may explain previously shown increased systemic adaptive immune reactivity, if the regulatory cross-talk between intra- and extra-intestinal immune cells is immature following a neonatal germ-free period. These findings are furthermore discussed in the context of recently published results on how lack of microbial exposure in the neonatal life modifies disease expression in rodents used as models mimicking human inflammatory diseases. In particular, with a focus on how these interesting findings could be used to optimize the use of rodent models.


Assuntos
Biota , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Sistema Imunitário/fisiologia , Metagenoma , Modelos Animais , Animais , Homeostase , Camundongos
19.
J Nutr ; 143(4): 533-40, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23427328

RESUMO

Dietary carbohydrates improve growth conditions for distinct populations of bacteria that may affect mucosal and systemic immunity. In this study, we fed in a parallel experiment a 10% xylooligosaccharide (XOS)-supplemented diet or a control diet to 2 groups of male C57BL/6NTac mice for 10 wk from weaning. We found that the XOS diet significantly increased Bifidobacterium throughout the intestine compared with control-fed mice, with the highest proportions found in the ileum after XOS feeding (P < 0.001). In the intestinal epithelium, most innate immune-related genes were unaffected by XOS feeding, whereas expression of interleukin 1ß (Il1ß) (P < 0.01) and interferon γ (Ifnγ) (P < 0.05) was significantly less in blood from XOS-fed mice than from control-fed mice. In vitro treatment of blood with propionate significantly decreased Il1ß (P < 0.01), Ifnγ (P < 0.01), and interleukin 18 (Il18) (P < 0.001) expression, supporting our hypothesis that increased production of short-chain fatty acids (SCFAs) in the gut, which are transported across the intestine and into the systemic compartments, results in downregulation of low-grade inflammatory cytokines. The defensin regenerating islet-derived protein 3γ (RegIIIγ) was significantly more highly expressed in the small intestine (P < 0.01) in XOS-fed mice compared with control-fed mice, suggesting only minor contact between bifidobacteria and epithelial cells. In support of this, the SCFA-induced sodium/hydrogen exchanger isoform 3 expression tended to be greater in the XOS group than in the control group (P = 0.06), indicating an indirect SCFA-mediated antiinflammatory effect of XOS. In conclusion, XOS feeding decreases systemic inflammation, and this effect is most likely caused by higher SCFA concentrations as a result of an increased bifidobacterial saccharolytic fermentation in the entire gut and not only in the large intestine.


Assuntos
Dieta , Regulação para Baixo/efeitos dos fármacos , Glucuronatos/administração & dosagem , Interferon gama/sangue , Interleucina-1beta/sangue , Oligossacarídeos/administração & dosagem , Animais , Anti-Inflamatórios , Bifidobacterium/crescimento & desenvolvimento , Bifidobacterium/metabolismo , Fermentação , Expressão Gênica/efeitos dos fármacos , Imunidade/genética , Interferon gama/genética , Interleucina-1beta/genética , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
20.
Eur J Immunol ; 43(2): 447-57, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23136011

RESUMO

Intestinal epithelial cells (IECs) are one of a few cell types in the body with constitutive surface expression of natural killer group 2 member D (NKG2D) ligands, although the magnitude of ligand expression by IECs varies. Here, we investigated whether the gut microbiota regulates the NKG2D ligand expression on small IECs. Germ-free and ampicillin-treated mice were shown to have a significant increase in NKG2D ligand expression. Interestingly, vancomycin treatment, which propagated the bacterium Akkermansia muciniphila and reduced the level of IFN-γ and IL-15 in the intestine, decreased the NKG2D ligand expression on IECs. In addition, a similar increase in A. muciniphila and a decreased NKG2D ligand expression was seen after feeding with dietary xylooligosaccharides. A pronounced increase in NKG2D ligand expression was furthermore observed in IL-10-deficient mice. In summary, our results suggest that the constitutive levels of NKG2D ligand expression on IECs are regulated by microbial signaling in the gut and further disfavor the intuitive notion that IEC NKG2D ligand expression is caused by low-grade immune reaction against commensal bacteria. It is more likely that constitutively high IEC NKG2D ligand expression is kept in check by an intestinal regulatory immune milieu induced by members of the gut microbiota, for example A. muciniphila.


Assuntos
Células Epiteliais/imunologia , Células Epiteliais/microbiologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Metagenoma/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/biossíntese , Ampicilina/farmacologia , Animais , Células Epiteliais/metabolismo , Fezes/microbiologia , Feminino , Glucuronatos/imunologia , Interferon gama/imunologia , Interferon gama/metabolismo , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-15/imunologia , Interleucina-15/metabolismo , Intestino Delgado/citologia , Intestino Delgado/imunologia , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Antígenos de Histocompatibilidade Menor/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Proteínas Associadas à Matriz Nuclear/imunologia , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/imunologia , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Oligossacarídeos/imunologia , Transdução de Sinais/imunologia , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...