Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 32(8): 1925-1942, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36680370

RESUMO

Divergence in the face of high dispersal capabilities is a documented but poorly understood phenomenon. The white-tailed eagle (Haliaeetus albicilla) has a large geographic dispersal capability and should theoretically be able to maintain genetic homogeneity across its dispersal range. However, following analysis of the genomic variation of white-tailed eagles, from both historical and contemporary samples, clear signatures of ancient biogeographic substructure across Europe and the North-East Atlantic is observed. The greatest genomic differentiation was observed between island (Greenland and Iceland) and mainland (Denmark, Norway and Estonia) populations. The two island populations share a common ancestry from a single mainland population, distinct from the other sampled mainland populations, and despite the potential for high connectivity between Iceland and Greenland they are well separated from each other and are characterized by inbreeding and little variation. Temporal differences also highlight a pattern of regional populations persisting despite the potential for admixture. All sampled populations generally showed a decline in effective population size over time, which may have been shaped by four historical events: (1) Isolation of refugia during the last glacial period 110-115,000 years ago, (2) population divergence following the colonization of the deglaciated areas ~10,000 years ago, (3) human population expansion, which led to the settlement in Iceland ~1100 years ago, and (4) human persecution and exposure to toxic pollutants during the last two centuries.


Assuntos
Águias , Poluentes Ambientais , Animais , Humanos , Águias/genética , Europa (Continente) , Noruega , Genômica , Variação Genética/genética
2.
BMC Genomics ; 23(1): 160, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35209843

RESUMO

BACKGROUND: Whole genomes are commonly assembled into a collection of scaffolds and often lack annotations of autosomes, sex chromosomes, and organelle genomes (i.e., mitochondrial and chloroplast). As these chromosome types differ in effective population size and can have highly disparate evolutionary histories, it is imperative to take this information into account when analysing genomic variation. Here we assessed the accuracy of four methods for identifying the homogametic sex chromosome in a small population using two whole genome sequences (WGS) and 133 RAD sequences of white-tailed eagles (Haliaeetus albicilla): i) difference in read depth per scaffold in a male and a female, ii) heterozygosity per scaffold in a male and a female, iii) mapping to the reference genome of a related species (chicken) with annotated sex chromosomes, and iv) analysis of SNP-loadings from a principal components analysis (PCA), based on the low-depth RADseq data. RESULTS: The best performing approach was the reference mapping (method iii), which identified 98.12% of the expected homogametic sex chromosome (Z). Read depth per scaffold (method i) identified 86.41% of the homogametic sex chromosome with few false positives. SNP-loading scores (method iv) identified 78.6% of the Z-chromosome and had a false positive discovery rate of more than 10%. Heterozygosity per scaffold (method ii) did not provide clear results due to a lack of diversity in both the Z and autosomal chromosomes, and potential interference from the heterogametic sex chromosome (W). The evaluation of these methods also revealed 10 Mb of putative PAR and gametologous regions. CONCLUSION: Identification of the homogametic sex chromosome in a small population is best accomplished by reference mapping or examining differences in read depth between sexes.


Assuntos
Genoma , Cromossomos Sexuais , Animais , Feminino , Genômica , Heterozigoto , Homozigoto , Masculino , Cromossomos Sexuais/genética
3.
Curr Biol ; 28(24): 4022-4028.e5, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30528581

RESUMO

The muskox (Ovibos moschatus) is the largest terrestrial herbivore in the Arctic and plays a vital role in the tundra ecosystem [1-4]. Its range, abundance, and genetic diversity have declined dramatically over the past 30,000 years [5]. Two subspecies are recognized, but little is known about the genetic structure and how this relates to the species history. One unresolved question is how and when the species dispersed into its present range, notably the present strongholds in the Canadian archipelago and Greenland. We used genotyping by sequencing (GBS) data from 116 muskox individuals and genotype likelihood-based methods to infer the genetic diversity and distribution of genetic variation in the species. We identified a basal split separating the two recognized subspecies, in agreement with isolation of the muskox into several refugia in the Nearctic around 21,000 years ago [6], near the last glacial maximum (LGM). In addition, we found evidence of strong, successive founder effects inflicting a progressive loss of genetic diversity as the muskox colonized the insular High Arctic from an unknown Nearctic origin. These have resulted in exceptionally low genetic diversity in the Greenlandic populations, as well as extremely high genetic differentiation among regional populations. Our results highlight the need for further investigations of genetic erosion in Nearctic terrestrial mammals, of which several show similar colonization histories in the High Artic.


Assuntos
Distribuição Animal , Variação Genética , Ruminantes/genética , Animais , Regiões Árticas , Groenlândia , Filogeografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...