Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 9(3): e0117723, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38376179

RESUMO

Predators play a central role in shaping community structure, function, and stability. The degree to which bacteriophage predators (viruses that infect bacteria) evolve to be specialists with a single bacterial prey species versus generalists able to consume multiple types of prey has implications for their effect on microbial communities. The presence and abundance of multiple bacterial prey types can alter selection for phage generalists, but less is known about how interactions between prey shape predator specificity in microbial systems. Using a phenomenological mathematical model of phage and bacterial populations, we find that the dominant phage strategy depends on prey ecology. Given a fitness cost for generalism, generalist predators maintain an advantage when prey species compete, while specialists dominate when prey are obligately engaged in cross-feeding interactions. We test these predictions in a synthetic microbial community with interacting strains of Escherichia coli and Salmonella enterica by competing a generalist T5-like phage able to infect both prey against P22vir, an S. enterica-specific phage. Our experimental data conform to our modeling expectations when prey species are competing or obligately mutualistic, although our results suggest that the in vitro cost of generalism is caused by a combination of biological mechanisms not anticipated in our model. Our work demonstrates that interactions between bacteria play a role in shaping ecological selection on predator specificity in obligately lytic bacteriophages and emphasizes the diversity of ways in which fitness trade-offs can manifest. IMPORTANCE: There is significant natural diversity in how many different types of bacteria a bacteriophage can infect, but the mechanisms driving this diversity are unclear. This study uses a combination of mathematical modeling and an in vitro system consisting of Escherichia coli, Salmonella enterica, a T5-like generalist phage, and the specialist phage P22vir to highlight the connection between bacteriophage specificity and interactions between their potential microbial prey. Mathematical modeling suggests that competing bacteria tend to favor generalist bacteriophage, while bacteria that benefit each other tend to favor specialist bacteriophage. Experimental results support this general finding. The experiments also show that the optimal phage strategy is impacted by phage degradation and bacterial physiology. These findings enhance our understanding of how complex microbial communities shape selection on bacteriophage specificity, which may improve our ability to use phage to manage antibiotic-resistant microbial infections.


Assuntos
Bacteriófagos , Bacteriófagos/fisiologia , Bactérias , Escherichia coli/fisiologia , Fenômenos Fisiológicos Bacterianos , Simbiose
2.
J Appl Microbiol ; 134(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38059866

RESUMO

AIMS: To determine if the bacteriophage abortive infection system ToxIN is present in foodborne Salmonella and if it protects against infection by bacteriophages specific to enteric bacteria. METHODS AND RESULTS: A set of foodborne Salmonella enteritidis isolates from a 2010 eggshell outbreak was identified via BLASTN (basic local alignment search tool nucleotide) queries as harboring a close homolog of ToxIN, carried on a plasmid with putative mobilization proteins. This homolog was cloned into a plasmid vector and transformed into the laboratory strain Salmonella typhimurium LT2 and tested against a set of Salmonella-specific phages (FelixO1, S16, Sp6, LPST153, and P22 HT105/1 int-201). ToxIN reduced infection by FelixO1, S16, and LPST153 by ∼1-4 log PFU ml-1 while reducing the plaque size of Sp6. When present in LT2 and Escherichia coli MG1655, ToxIN conferred cross-genus protection against phage isolates, which infect both bacteria. Finally, the putative ToxIN plasmid was found in whole-genome sequence contigs of several Salmonella serovars, pathogenic E. coli, and other pathogenic enterobacteria. CONCLUSIONS: Salmonella and E. coli can resist infection by several phages via ToxIN under laboratory conditions; ToxIN is present in foodborne pathogens including Salmonella and Shiga-toxigenic E. coli.


Assuntos
Bacteriófagos , Infecções por Escherichia coli , Fagos de Salmonella , Escherichia coli Shiga Toxigênica , Humanos , Salmonella enteritidis/genética , Sorogrupo , Infecções por Escherichia coli/microbiologia , Enterobacteriaceae , Fagos de Salmonella/genética
3.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37669894

RESUMO

AIMS: The purpose of this study was to determine whether plant-associated bacteria (PAB) can reduce Salmonella enterica colonization and infection of alfalfa sprouts to reduce the risk of foodborne illness. METHODS: We isolated PAB from alfalfa seeds and sprouts. Monoclonal isolates of the bacteria were obtained and tested for their ability to inhibit Salmonella Typhimurium growth in alfalfa sprouts over 6 days. Genome sequencing and annotation were used to construct draft genomes of the bacteria isolated in this study using Illumina sequencing platform. RESULTS: We observed that a cocktail of five PAB could reduce Salmonella growth in alfalfa sprouts from ∼108 to ∼105 CFU g-1, demonstrating a protective role. Genome sequencing revealed that these bacteria were members of the Pseudomonas, Pantoea, and Priestia genus, and did not possess genes that were pathogenic to plants or animals. CONCLUSIONS: This work demonstrates that PAB can be utilized to reduce pathogen levels in fresh produce, which may be synergistic with other technologies to improve the safety of sprouts and other fresh produce.


Assuntos
Bacillaceae , Doenças Transmitidas por Alimentos , Salmonella enterica , Animais , Salmonella enterica/genética , Medicago sativa , Salmonella typhimurium , Verduras
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...