Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2015): 20231614, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38264782

RESUMO

Our ability to assess biodiversity at relevant spatial and temporal scales for informing management is of increasing importance given this is foundational to identify and mitigate the impacts of global change. Collecting baseline information and tracking ecological changes are particularly important for areas experiencing rapid changes and representing data gaps such as Arctic marine ecosystems. Environmental DNA has the potential to provide such data. We extracted environmental DNA from 90 surface sediment samples to assess eukaryote diversity around Greenland and Svalbard using two separate primer pairs amplifying different sections of the 18S rRNA gene. We detected 27 different phyla and 99 different orders and found that temperature and the change in temperature explained the most variation in the community in a single linear model, while latitude, sea ice cover and change in temperature explained the most variation in the community when assessed by individual non-linear models. We identified potential indicator taxa for Arctic climate change, including a terebellid annelid worm. In conclusion, our study demonstrates that environmental DNA offers a feasible method to assess biodiversity and identifies warming as a key driver of differences in biodiversity across these remote ecosystems.


Assuntos
DNA Ambiental , Ecossistema , Biodiversidade , Clima , Sedimentos Geológicos
2.
Sci Total Environ ; 898: 165507, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37442464

RESUMO

Macroalgal forests export much of their production, partly supporting food webs and carbon stocks beyond their habitat, but evidence of their contribution in sediment carbon stocks is poor. We test the hypothesis that macroalgae contribute to carbon stocks in arctic marine sediments. We used environmental DNA (eDNA) fingerprinting on a large-scale set of surface sediment samples from Greenland and Svalbard. We evaluated eDNA results by comparing with traditional survey and tracer methods. The eDNA-based survey identified macroalgae in 94 % of the sediment samples covering shallow nearshore areas to 1460 m depth and 350 km offshore, with highest sequence abundance nearshore and with dominance of brown macroalgae. Overall, the eDNA results reflected the potential source communities of macroalgae and eelgrass assessed by traditional surveys, with the most abundant orders being common among different methods. A stable isotope analysis showed a considerable contribution from macroalgae in sediments although with high uncertainty, highlighting eDNA as a great improvement and supplement for documenting macroalgae as a contributor to sediment carbon stocks. Conclusively, we provide evidence for a prevalent contribution of macroalgal forests in arctic surface sediments, nearshore as well as offshore, identifying brown algae as main contributors.


Assuntos
DNA Ambiental , Alga Marinha , Sedimentos Geológicos , Ecossistema , Carbono/análise , Cadeia Alimentar
3.
Front Microbiol ; 7: 1533, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27729909

RESUMO

Bacterioplankton play a key role in marine waters facilitating processes important for carbon cycling. However, the influence of specific bacterial populations and environmental conditions on bacterioplankton community performance remains unclear. The aim of the present study was to identify drivers of bacterioplankton community functions, taking into account the variability in community composition and environmental conditions over seasons, in two contrasting coastal systems. A Least Absolute Shrinkage and Selection Operator (LASSO) analysis of the biological and chemical data obtained from surface waters over a full year indicated that specific bacterial populations were linked to measured functions. Namely, Synechococcus (Cyanobacteria) was strongly correlated with protease activity. Both function and community composition showed seasonal variation. However, the pattern of substrate utilization capacity could not be directly linked to the community dynamics. The overall importance of dissolved organic matter (DOM) parameters in the LASSO models indicate that bacterioplankton respond to the present substrate landscape, with a particular importance of nitrogenous DOM. The identification of common drivers of bacterioplankton community functions in two different systems indicates that the drivers may be of broader relevance in coastal temperate waters.

4.
ISME J ; 9(2): 273-85, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25026373

RESUMO

Nitrogen (N) fixation is fueling planktonic production in a multitude of aquatic environments. In meso- and poly-haline estuaries, however, the contribution of N by pelagic N2 fixation is believed to be insignificant due to the high input of N from land and the presumed absence of active N2-fixing organisms. Here we report N2 fixation rates, nifH gene composition and nifH gene transcript abundance for key diazotrophic groups over 1 year in two contrasting, temperate, estuarine systems: Roskilde Fjord (RF) and the Great Belt (GB) strait. Annual pelagic N2 fixation rates averaged 17 and 61 mmol N m(-2) per year at the two sites, respectively. In RF, N2 fixation was mainly accompanied by transcripts related to heterotrophic (for example, Pseudomonas sp.) and photoheterotrophic bacteria (for example, unicellular diazotrophic cyanobacteria group A). In the GB, the first of two N2 fixation peaks coincided with a similar nifH-expressing community as in RF, whereas the second peak was synchronous with increased nifH expression by an array of diazotrophs, including heterotrophic organisms as well as the heterocystous cyanobacterium Anabaena. Thus, we show for the first time that significant planktonic N2 fixation takes place in mesohaline, temperate estuaries and that the importance of heterotrophic, photoheterotrophic and photosynthetic diazotrophs is clearly variable in space and time.


Assuntos
Cianobactérias/metabolismo , Estuários , Processos Heterotróficos , Fixação de Nitrogênio , Processos Fototróficos , Cianobactérias/genética , Fixação de Nitrogênio/genética , Oxirredutases/genética , Plâncton/genética , Plâncton/metabolismo
5.
Mar Pollut Bull ; 58(9): 1263-77, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19535110

RESUMO

Three multi-metric benthic macrofauna indices were used to assess marine benthic ecological quality status (EcoQS) according to the European Water Framework Directive, in seven pollution gradients mainly, western Scandinavia. The impacts included organic load, hypoxia, metals, urban effluents and physical disturbance. The indices responded in a similar threshold fashion, irrespective of impact factor identity. Usually, the border between Good and Moderate EcoQS (G/M), is determined as some deviation from a reference situation. References, however, are difficult to find. An alternative procedure is described to estimate the G/M border, not requiring reference data. Thresholds, where faunal structure deterioration commences, were identified from non-linear regressions between indices and impact factors. Index values from the less impacted side of the thresholds were assumed to come from environments of Good and High EcoQS, and the 5th percentile of these data, was defined as the G/M border. Estimated G/M borders compared well with previous studies.


Assuntos
Biodiversidade , Água do Mar/química , Poluentes da Água/análise , Animais , Cobre/análise , Meio Ambiente , Eutrofização , Resíduos Industriais/análise , Invertebrados , Chumbo/análise , Níquel/análise , Nitrogênio/análise , Oceanos e Mares , Fósforo/análise , Bifenilos Policlorados/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Países Escandinavos e Nórdicos , Poluição da Água/estatística & dados numéricos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...