Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Clin Cancer Res ; 30(10): 2245-2259, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38451486

RESUMO

PURPOSE: Emerging evidence underscores the critical role of extrinsic factors within the microenvironment in protecting leukemia cells from therapeutic interventions, driving disease progression, and promoting drug resistance in acute myeloid leukemia (AML). This finding emphasizes the need for the identification of targeted therapies that inhibit intrinsic and extrinsic signaling to overcome drug resistance in AML. EXPERIMENTAL DESIGN: We performed a comprehensive analysis utilizing a cohort of ∼300 AML patient samples. This analysis encompassed the evaluation of secreted cytokines/growth factors, gene expression, and ex vivo drug sensitivity to small molecules. Our investigation pinpointed a notable association between elevated levels of CCL2 and diminished sensitivity to the MEK inhibitors (MEKi). We validated this association through loss-of-function and pharmacologic inhibition studies. Further, we deployed global phosphoproteomics and CRISPR/Cas9 screening to identify the mechanism of CCR2-mediated MEKi resistance in AML. RESULTS: Our multifaceted analysis unveiled that CCL2 activates multiple prosurvival pathways, including MAPK and cell-cycle regulation in MEKi-resistant cells. Employing combination strategies to simultaneously target these pathways heightened growth inhibition in AML cells. Both genetic and pharmacologic inhibition of CCR2 sensitized AML cells to trametinib, suppressing proliferation while enhancing apoptosis. These findings underscore a new role for CCL2 in MEKi resistance, offering combination therapies as an avenue to circumvent this resistance. CONCLUSIONS: Our study demonstrates a compelling rationale for translating CCL2/CCR2 axis inhibitors in combination with MEK pathway-targeting therapies, as a potent strategy for combating drug resistance in AML. This approach has the potential to enhance the efficacy of treatments to improve AML patient outcomes.


Assuntos
Quimiocina CCL2 , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda , Inibidores de Proteínas Quinases , Receptores CCR2 , Transdução de Sinais , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Receptores CCR2/metabolismo , Receptores CCR2/antagonistas & inibidores , Receptores CCR2/genética , Resistencia a Medicamentos Antineoplásicos/genética , Quimiocina CCL2/metabolismo , Quimiocina CCL2/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Animais , Piridonas/farmacologia , Piridonas/uso terapêutico , Camundongos
2.
Cell Rep Med ; 5(1): 101359, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38232702

RESUMO

Acute myeloid leukemia is a poor-prognosis cancer commonly stratified by genetic aberrations, but these mutations are often heterogeneous and fail to consistently predict therapeutic response. Here, we combine transcriptomic, proteomic, and phosphoproteomic datasets with ex vivo drug sensitivity data to help understand the underlying pathophysiology of AML beyond mutations. We measure the proteome and phosphoproteome of 210 patients and combine them with genomic and transcriptomic measurements to identify four proteogenomic subtypes that complement existing genetic subtypes. We build a predictor to classify samples into subtypes and map them to a "landscape" that identifies specific drug response patterns. We then build a drug response prediction model to identify drugs that target distinct subtypes and validate our findings on cell lines representing various stages of quizartinib resistance. Our results show how multiomics data together with drug sensitivity data can inform therapy stratification and drug combinations in AML.


Assuntos
Leucemia Mieloide Aguda , Proteogenômica , Humanos , Proteômica/métodos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Genômica/métodos , Mutação
3.
J Med Chem ; 66(23): 16388-16409, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37991844

RESUMO

Modulating the chemical composition of cereblon (CRBN) binders is a critical step in the optimization process of protein degraders that seek to hijack the function of this E3 ligase. Small structural changes can have profound impacts on the overall profile of these compounds, including depth of on-target degradation, neosubstrate degradation selectivity, as well as other drug-like properties. Herein, we report the design and synthesis of a series of novel CRBN binding moieties. These CRBN binders were evaluated for CRBN binding and degradation of common neosubstrates Aiolos and GSPT1. A selection of these binders was employed for an exploratory matrix of heterobifunctional molecules, targeting CRBN-mediated degradation of the androgen receptor.


Assuntos
Peptídeo Hidrolases , Ubiquitina-Proteína Ligases , Proteólise , Peptídeo Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
4.
PLoS One ; 18(4): e0285042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37115761

RESUMO

In 2020, the Department of Energy established the National Virtual Biotechnology Laboratory (NVBL) to address key challenges associated with COVID-19. As part of that effort, Pacific Northwest National Laboratory (PNNL) established a capability to collect and analyze specimens from employees who self-reported symptoms consistent with the disease. During the spring and fall of 2021, 688 specimens were screened for SARS-CoV-2, with 64 (9.3%) testing positive using reverse-transcriptase quantitative PCR (RT-qPCR). Of these, 36 samples were released for research. All 36 positive samples released for research were sequenced and genotyped. Here, the relationship between patient age and viral load as measured by Ct values was measured and determined to be only weakly significant. Consensus sequences for each sample were placed into a global phylogeny and transmission dynamics were investigated, revealing that the closest relative for many samples was from outside of Washington state, indicating mixing of viral pools within geographic regions.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/epidemiologia , Teste para COVID-19 , Técnicas de Laboratório Clínico , Filogenia , RNA Viral/análise , Manejo de Espécimes , Local de Trabalho , Washington
5.
Clin Proteomics ; 19(1): 30, 2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-35896960

RESUMO

Acute Myeloid Leukemia (AML) affects 20,000 patients in the US annually with a five-year survival rate of approximately 25%. One reason for the low survival rate is the high prevalence of clonal evolution that gives rise to heterogeneous sub-populations of leukemic cells with diverse mutation spectra, which eventually leads to disease relapse. This genetic heterogeneity drives the activation of complex signaling pathways that is reflected at the protein level. This diversity makes it difficult to treat AML with targeted therapy, requiring custom patient treatment protocols tailored to each individual's leukemia. Toward this end, the Beat AML research program prospectively collected genomic and transcriptomic data from over 1000 AML patients and carried out ex vivo drug sensitivity assays to identify genomic signatures that could predict patient-specific drug responses. However, there are inherent weaknesses in using only genetic and transcriptomic measurements as surrogates of drug response, particularly the absence of direct information about phosphorylation-mediated signal transduction. As a member of the Clinical Proteomic Tumor Analysis Consortium, we have extended the molecular characterization of this cohort by collecting proteomic and phosphoproteomic measurements from a subset of these patient samples (38 in total) to evaluate the hypothesis that proteomic signatures can improve the ability to predict response to 26 drugs in AML ex vivo samples. In this work we describe our systematic, multi-omic approach to evaluate proteomic signatures of drug response and compare protein levels to other markers of drug response such as mutational patterns. We explore the nuances of this approach using two drugs that target key pathways activated in AML: quizartinib (FLT3) and trametinib (Ras/MEK), and show how patient-derived signatures can be interpreted biologically and validated in cell lines. In conclusion, this pilot study demonstrates strong promise for proteomics-based patient stratification to assess drug sensitivity in AML.

6.
Orthop J Sports Med ; 10(1): 23259671211060040, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35071654

RESUMO

BACKGROUND: Heterotopic ossification (HO) is the formation of bone in soft tissue resultant from inflammatory processes. Lesion formation after arthroscopic procedures is an uncommon but challenging complication. Optimal prophylaxis and management strategies have not been clearly defined. PURPOSE: To present a scoping review of the pathophysiology, risk factors, diagnostic modalities, prophylaxis recommendations, and current treatment practices concerning HO after arthroscopic management of orthopaedic injuries. STUDY DESIGN: Scoping review; Level of evidence, 4. METHODS: A scoping review via a PubMed search was performed according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-analyses) guidelines. The search strategy was based on the terms "heterotopic ossification" AND "arthroscopy." The clinical outcomes review included studies on the arthroscopic management of orthopaedic injuries in which the primary subject matter or a secondary outcome was the development of HO. An analysis of the pathophysiology, diagnostic modalities, and management options was reported. RESULTS: A total of 43 studies (33,065 patients) reported on HO after hip arthroscopy, while 21 (83 patients) collectively reported on HO after arthroscopic procedures to the shoulder, elbow, knee, or ankle; however, management techniques were not standardized. Identified risk factors for HO included male sex and mixed impingement pathology, while intraoperative capsular management was not suggested as a contributing factor. Diagnosis of ossification foci was performed using radiography and computed tomography. The rate of HO after hip arthroscopy procedures approached 46% without prophylaxis, and administration of nonsteroidal anti-inflammatory drugs (NSAIDs) decreased occurrence rates to 4% but carries associated risks. External beam radiation has not been exclusively studied for use after arthroscopic procedures. CONCLUSION: HO is a known complication after arthroscopic management of orthopaedic injuries. NSAID prophylaxis has been demonstrated to be effective after hip arthroscopy procedures. Patients with persistent symptoms and mature lesions may be indicated for surgical excision, although variability is present in patient-reported outcome scores postoperatively.

7.
Kidney Int ; 101(1): 106-118, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34562503

RESUMO

Progression of glomerulosclerosis is associated with loss of podocytes with subsequent glomerular tuft instability. It is thought that a diminished number of podocytes may be able to preserve tuft stability through cell hypertrophy associated with cell cycle reentry. At the same time, reentry into the cell cycle risks podocyte detachment if podocytes cross the G1/S checkpoint and undergo abortive cytokinesis. In order to study cell cycle dynamics during chronic kidney disease (CKD) development, we used a FUCCI model (fluorescence ubiquitination-based cell cycle indicator) of mice with X-linked Alport Syndrome. This model exhibits progressive CKD and expresses fluorescent reporters of cell cycle stage exclusively in podocytes. With the development of CKD, an increasing fraction of podocytes in vivo were found to be in G1 or later cell cycle stages. Podocytes in G1 and G2 were hypertrophic. Heterozygous female mice, with milder manifestations of CKD, showed G1 fraction numbers intermediate between wild-type and male Alport mice. Proteomic analysis of podocytes in different cell cycle phases showed differences in cytoskeleton reorganization and metabolic processes between G0 and G1 in disease. Additionally, in vitro experiments confirmed that damaged podocytes reentered the cell cycle comparable to podocytes in vivo. Importantly, we confirmed the upregulation of PDlim2, a highly expressed protein in podocytes in G1, in a patient with Alport Syndrome, confirming our proteomics data in the human setting. Thus, our data showed that in the Alport model of progressive CKD, podocyte cell cycle distribution is altered, suggesting that cell cycle manipulation approaches may have a role in the treatment of various progressive glomerular diseases characterized by podocytopenia.


Assuntos
Nefrite Hereditária , Podócitos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Ciclo Celular , Progressão da Doença , Feminino , Humanos , Proteínas com Domínio LIM/metabolismo , Masculino , Camundongos , Proteínas dos Microfilamentos/metabolismo , Nefrite Hereditária/genética , Nefrite Hereditária/metabolismo , Podócitos/metabolismo , Proteômica
8.
J Am Soc Mass Spectrom ; 33(1): 17-30, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34813325

RESUMO

Global and phosphoproteome profiling has demonstrated great utility for the analysis of clinical specimens. One barrier to the broad clinical application of proteomic profiling is the large amount of biological material required, particularly for phosphoproteomics─currently on the order of 25 mg wet tissue weight. For hematopoietic cancers such as acute myeloid leukemia (AML), the sample requirement is ≥10 million peripheral blood mononuclear cells (PBMCs). Across large study cohorts, this requirement will exceed what is obtainable for many individual patients/time points. For this reason, we were interested in the impact of differential peptide loading across multiplex channels on proteomic data quality. To achieve this, we tested a range of channel loading amounts (approximately the material obtainable from 5E5, 1E6, 2.5E6, 5E6, and 1E7 AML patient cells) to assess proteome coverage, quantification precision, and peptide/phosphopeptide detection in experiments utilizing isobaric tandem mass tag (TMT) labeling. As expected, fewer missing values were observed in TMT channels with higher peptide loading amounts compared to lower loadings. Moreover, channels with a lower loading have greater quantitative variability than channels with higher loadings. A statistical analysis showed that decreased loading amounts result in an increase in the type I error rate. We then examined the impact of differential loading on the detection of known differences between distinct AML cell lines. Similar patterns of increased data missingness and higher quantitative variability were observed as loading was decreased resulting in fewer statistical differences; however, we found good agreement in features identified as differential, demonstrating the value of this approach.


Assuntos
Fosfopeptídeos , Proteômica/métodos , Proteômica/normas , Espectrometria de Massas em Tandem/métodos , Espectrometria de Massas em Tandem/normas , Células Cultivadas , Cromatografia de Afinidade , Confiabilidade dos Dados , Humanos , Marcação por Isótopo , Leucócitos Mononucleares/química , Fosfopeptídeos/análise , Fosfopeptídeos/química , Fosfopeptídeos/isolamento & purificação
9.
Front Med (Lausanne) ; 9: 1001879, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36687454

RESUMO

Background: Pancreatic Exocrine Insufficiency (PEI) is a possible cause of recurrent/persistent symptoms in celiac disease. Although pancreatic enzyme supplementation may be used to treat non-responsive celiac disease (NRCD) in clinical practice, clinical outcomes are variable and there is limited and low quality evidence to support this practice. The aim of this study was to assess the efficacy of pancreatic enzyme supplements (PES) for improvement of gastrointestinal symptoms in NRCD. Methods: Prospective, randomized, placebo-controlled, double-blind, cross-over trial in adults with NRCD examining Celiac Disease-Gastrointestinal Symptom Rating Scale (CeD-GSRS) scores on PES (pancrelipase co-administered with omeprazole) versus placebo (omeprazole only) during a 10-day treatment period. The study was registered under the clinical trials registry (https://clinicaltrials.gov/ number, NCT02475369) on 18 Jun 2015. Results: Twelve participants (nine female) were included in the per-protocol analysis; one participant had low fecal elastase-1. Pancrelipase was not associated with significant change in CeD-GSRS compared to placebo (-0.03 versus -0.26; P = 0.366). There was a significant decrease in mean values of total CeD-GSRS scores (3.58 versus 2.90, P = 0.004), abdominal pain (2.92 versus 2.42, P = 0.009), and diarrhea sub-scores (3.44 versus 2.92, P = 0.037) during the run-in period with omeprazole. Conclusion: In this prospective, cross-over randomized, placebo-controlled study, PES did not improve symptoms in patients with NRCD. It is unclear whether this is a trial effect or related to administration of omeprazole.

10.
J Med Chem ; 64(16): 11886-11903, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34355886

RESUMO

The PKC-θ isoform of protein kinase C is selectively expressed in T lymphocytes and plays an important role in the T cell antigen receptor (TCR)-triggered activation of mature T cells, T cell proliferation, and the subsequent release of cytokines such as interleukin-2 (IL-2). Herein, we report the synthesis and structure-activity relationship (SAR) of a novel series of PKC-θ inhibitors. Through a combination of structure-guided design and exploratory SAR, suitable replacements for the basic C4 amine of the original lead (3) were identified. Property-guided design enabled the identification of appropriately substituted C2 groups to afford potent analogs with metabolic stability and permeability to support in vivo testing. With exquisite general kinase selectivity, cellular inhibition of T cell activation as assessed by IL-2 expression, a favorable safety profile, and demonstrated in vivo efficacy in models of acute and chronic T cell activation with oral dosing, CC-90005 (57) was selected for clinical development.


Assuntos
Cicloexanóis/uso terapêutico , Doença Enxerto-Hospedeiro/tratamento farmacológico , Fatores Imunológicos/uso terapêutico , Proteína Quinase C-theta/antagonistas & inibidores , Inibidores de Proteínas Quinases/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Células CACO-2 , Proliferação de Células/efeitos dos fármacos , Cicloexanóis/síntese química , Cicloexanóis/metabolismo , Humanos , Fatores Imunológicos/síntese química , Fatores Imunológicos/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Masculino , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Estrutura Molecular , Ligação Proteica , Proteína Quinase C-delta/antagonistas & inibidores , Proteína Quinase C-delta/metabolismo , Proteína Quinase C-theta/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/metabolismo , Pirimidinas/síntese química , Pirimidinas/metabolismo , Relação Estrutura-Atividade , Linfócitos T/efeitos dos fármacos
11.
Cancer Cell ; 39(7): 999-1014.e8, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34171263

RESUMO

Our study details the stepwise evolution of gilteritinib resistance in FLT3-mutated acute myeloid leukemia (AML). Early resistance is mediated by the bone marrow microenvironment, which protects residual leukemia cells. Over time, leukemia cells evolve intrinsic mechanisms of resistance, or late resistance. We mechanistically define both early and late resistance by integrating whole-exome sequencing, CRISPR-Cas9, metabolomics, proteomics, and pharmacologic approaches. Early resistant cells undergo metabolic reprogramming, grow more slowly, and are dependent upon Aurora kinase B (AURKB). Late resistant cells are characterized by expansion of pre-existing NRAS mutant subclones and continued metabolic reprogramming. Our model closely mirrors the timing and mutations of AML patients treated with gilteritinib. Pharmacological inhibition of AURKB resensitizes both early resistant cell cultures and primary leukemia cells from gilteritinib-treated AML patients. These findings support a combinatorial strategy to target early resistant AML cells with AURKB inhibitors and gilteritinib before the expansion of pre-existing resistance mutations occurs.


Assuntos
Compostos de Anilina/farmacologia , Aurora Quinase B/metabolismo , Biomarcadores Tumorais/metabolismo , Resistencia a Medicamentos Antineoplásicos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Leucemia Mieloide Aguda/tratamento farmacológico , Pirazinas/farmacologia , Microambiente Tumoral , Aurora Quinase B/genética , Biomarcadores Tumorais/genética , Exoma , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Metaboloma , Inibidores de Proteínas Quinases/farmacologia , Proteoma , Células Tumorais Cultivadas
12.
ACS Omega ; 6(19): 12660-12666, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34056417

RESUMO

Isobaric labeling via tandem mass tag (TMT) reagents enables sample multiplexing prior to LC-MS/MS, facilitating high-throughput large-scale quantitative proteomics. Consistent and efficient labeling reactions are essential to achieve robust quantification; therefore, embedded in our clinical proteomic protocol is a quality control (QC) sample that contains a small aliquot from each sample within a TMT set, referred to as "Mixing QC." This Mixing QC enables the detection of TMT labeling issues by LC-MS/MS before combining the full samples to allow for salvaging of poor TMT labeling reactions. While TMT labeling is a valuable tool, factors leading to poor reactions are not fully studied. We observed that relabeling does not necessarily rescue TMT reactions and that peptide samples sometimes remained acidic after resuspending in 50 mM HEPES buffer (pH 8.5), which coincided with low labeling efficiency (LE) and relatively low median reporter ion intensities (MRIIs). To obtain a more resilient TMT labeling procedure, we investigated LE, reporter ion missingness, the ratio of mean TMT set MRII to individual channel MRII, and the distribution of log 2 reporter ion ratios of Mixing QC samples. We discovered that sample pH is a critical factor in LE, and increasing the buffer concentration in poorly labeled samples before relabeling resulted in the successful rescue of TMT labeling reactions. Moreover, resuspending peptides in 500 mM HEPES buffer for TMT labeling resulted in consistently higher LE and lower missing data. By better controlling the sample pH for labeling and implementing multiple methods for assessing labeling quality before combining samples, we demonstrate that robust TMT labeling for large-scale quantitative studies is achievable.

13.
J Med Chem ; 64(4): 1835-1843, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33591756

RESUMO

Acute myeloid leukemia (AML) is marked by significant unmet clinical need due to both poor survival and high relapse rates where long-term disease control for most patients with relapsed or refractory AML remain dismal. Inspired to bring novel therapeutic options to these patients, we envisioned protein degradation as a potential therapeutic approach for the treatment of AML. Following this course, we discovered and pioneered a novel mechanism of action which culminated in the discovery of CC-90009. CC-90009 represents a novel protein degrader and the first cereblon E3 ligase modulating drug to enter clinical development that specifically targets GSPT1 (G1 to S phase transition 1) for proteasomal degradation. This manuscript briefly summarizes the mechanism of action, scientific rationale, medicinal chemistry, pharmacokinetic properties, and efficacy data for CC-90009, which is currently in phase 1 clinical development.


Assuntos
Acetamidas/uso terapêutico , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/uso terapêutico , Isoindóis/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Fatores de Terminação de Peptídeos/antagonistas & inibidores , Piperidonas/uso terapêutico , Ubiquitina-Proteína Ligases/metabolismo , Acetamidas/química , Acetamidas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Isoindóis/química , Isoindóis/farmacologia , Macaca fascicularis , Masculino , Camundongos , Estrutura Molecular , Fatores de Terminação de Peptídeos/química , Fatores de Terminação de Peptídeos/metabolismo , Piperidonas/química , Piperidonas/farmacologia , Proteólise/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Blood ; 137(5): 661-677, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33197925

RESUMO

A number of clinically validated drugs have been developed by repurposing the CUL4-DDB1-CRBN-RBX1 (CRL4CRBN) E3 ubiquitin ligase complex with molecular glue degraders to eliminate disease-driving proteins. Here, we present the identification of a first-in-class GSPT1-selective cereblon E3 ligase modulator, CC-90009. Biochemical, structural, and molecular characterization demonstrates that CC-90009 coopts the CRL4CRBN to selectively target GSPT1 for ubiquitination and proteasomal degradation. Depletion of GSPT1 by CC-90009 rapidly induces acute myeloid leukemia (AML) apoptosis, reducing leukemia engraftment and leukemia stem cells (LSCs) in large-scale primary patient xenografting of 35 independent AML samples, including those with adverse risk features. Using a genome-wide CRISPR-Cas9 screen for effectors of CC-90009 response, we uncovered the ILF2 and ILF3 heterodimeric complex as a novel regulator of cereblon expression. Knockout of ILF2/ILF3 decreases the production of full-length cereblon protein via modulating CRBN messenger RNA alternative splicing, leading to diminished response to CC-90009. The screen also revealed that the mTOR signaling and the integrated stress response specifically regulate the response to CC-90009 in contrast to other cereblon modulators. Hyperactivation of the mTOR pathway by inactivation of TSC1 and TSC2 protected against the growth inhibitory effect of CC-90009 by reducing CC-90009-induced binding of GSPT1 to cereblon and subsequent GSPT1 degradation. On the other hand, GSPT1 degradation promoted the activation of the GCN1/GCN2/ATF4 pathway and subsequent apoptosis in AML cells. Collectively, CC-90009 activity is mediated by multiple layers of signaling networks and pathways within AML blasts and LSCs, whose elucidation gives insight into further assessment of CC-90009s clinical utility. These trials were registered at www.clinicaltrials.gov as #NCT02848001 and #NCT04336982).


Assuntos
Acetamidas/farmacologia , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Isoindóis/farmacologia , Leucemia Mieloide Aguda/patologia , Terapia de Alvo Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Células-Tronco Neoplásicas/efeitos dos fármacos , Piperidonas/farmacologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Acetamidas/uso terapêutico , Animais , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Humanos , Isoindóis/uso terapêutico , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Células-Tronco Neoplásicas/enzimologia , Proteína do Fator Nuclear 45/fisiologia , Proteínas do Fator Nuclear 90/fisiologia , Fatores de Terminação de Peptídeos/metabolismo , Piperidonas/uso terapêutico , Complexo de Endopeptidases do Proteassoma/metabolismo , Conformação Proteica , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Proteólise , Bibliotecas de Moléculas Pequenas , Estresse Fisiológico , Serina-Treonina Quinases TOR/fisiologia , Células U937 , Ubiquitinação/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Front Med (Lausanne) ; 7: 499, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33072769

RESUMO

Molecular assessments at the single cell level can accelerate biological research by providing detailed assessments of cellular organization and tissue heterogeneity in both disease and health. The human kidney has complex multi-cellular states with varying functionality, much of which can now be completely harnessed with recent technological advances in tissue proteomics at a near single-cell level. We discuss the foundational steps in the first application of this mass spectrometry (MS) based proteomics method for analysis of sub-sections of the normal human kidney, as part of the Kidney Precision Medicine Project (KPMP). Using ~30-40 laser captured micro-dissected kidney cells, we identified more than 2,500 human proteins, with specificity to the proximal tubular (PT; n = 25 proteins) and glomerular (Glom; n = 67 proteins) regions of the kidney and their unique metabolic functions. This pilot study provides the roadmap for application of our near-single-cell proteomics workflow for analysis of other renal micro-compartments, on a larger scale, to unravel perturbations of renal sub-cellular function in the normal kidney as well as different etiologies of acute and chronic kidney disease.

16.
Gastroenterology ; 159(6): 2181-2192.e1, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32841647

RESUMO

BACKGROUND & AIMS: Clostridioides difficile toxin A (TcdA) activates the innate immune response. TcdA co-purifies with DNA. Toll-like receptor 9 (TLR9) recognizes bacterial DNA to initiate inflammation. We investigated whether DNA bound to TcdA activates an inflammatory response in murine models of C difficile infection via activation of TLR9. METHODS: We performed studies with human colonocytes and monocytes and macrophages from wild-type and TLR9 knockout mice incubated with TcdA or its antagonist (ODN TTAGGG) or transduced with vectors encoding TLR9 or small-interfering RNAs. Cytokine production was measured with enzyme-linked immunosorbent assay. We studied a transduction domain of TcdA (TcdA57-80), which was predicted by machine learning to have cell-penetrating activity and confirmed by synchrotron small-angle X-ray scattering. Intestines of CD1 mice, C57BL6J mice, and mice that express a form of TLR9 that is not activated by CpG DNA were injected with TcdA, TLR9 antagonist, or both. Enterotoxicity was estimated based on loop weight to length ratios. A TLR9 antagonist was tested in mice infected with C difficile. We incubated human colon explants with an antagonist of TLR9 and measured TcdA-induced production of cytokines. RESULTS: The TcdA57-80 protein transduction domain had membrane remodeling activity that allowed TcdA to enter endosomes. TcdA-bound DNA entered human colonocytes. TLR9 was required for production of cytokines by cultured cells and in human colon explants incubated with TcdA. TLR9 was required in TcdA-induced mice intestinal secretions and in the survival of mice infected by C difficile. Even in a protease-rich environment, in which only fragments of TcdA exist, the TcdA57-80 domain organized DNA into a geometrically ordered structure that activated TLR9. CONCLUSIONS: TcdA from C difficile can bind and organize bacterial DNA to activate TLR9. TcdA and TcdA fragments remodel membranes, which allows them to access endosomes and present bacterial DNA to and activate TLR9. Rather than inactivating the ability of DNA to bind TLR9, TcdA appears to chaperone and organize DNA into an inflammatory, spatially periodic structure.


Assuntos
Toxinas Bacterianas/metabolismo , Clostridioides difficile/imunologia , Infecções por Clostridium/imunologia , Colite/imunologia , Enterotoxinas/metabolismo , Receptor Toll-Like 9/metabolismo , Animais , Antibacterianos/efeitos adversos , Clostridioides difficile/genética , Clostridioides difficile/metabolismo , Infecções por Clostridium/induzido quimicamente , Infecções por Clostridium/microbiologia , Colite/induzido quimicamente , Colite/microbiologia , DNA Bacteriano/metabolismo , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Humanos , Imunidade Inata , Camundongos , Camundongos Knockout , Chaperonas Moleculares/metabolismo , Transdução de Sinais/imunologia , Receptor Toll-Like 9/genética
17.
J Med Chem ; 63(13): 6648-6676, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32130004

RESUMO

Many patients with multiple myeloma (MM) initially respond to treatment with modern combination regimens including immunomodulatory agents (lenalidomide and pomalidomide) and proteasome inhibitors. However, some patients lack an initial response to therapy (i.e., are refractory), and although the mean survival of MM patients has more than doubled in recent years, most patients will eventually relapse. To address this need, we explored the potential of novel cereblon E3 ligase modulators (CELMoDs) for the treatment of patients with relapsed or refractory multiple myeloma (RRMM). We found that optimization beyond potency of degradation, including degradation efficiency and kinetics, could provide efficacy in a lenalidomide-resistant setting. Guided by both phenotypic and protein degradation data, we describe a series of CELMoDs for the treatment of RRMM, culminating in the discovery of CC-92480, a novel protein degrader and the first CELMoD to enter clinical development that was specifically designed for efficient and rapid protein degradation kinetics.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antineoplásicos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Ubiquitina-Proteína Ligases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Concentração Inibidora 50 , Camundongos , Mieloma Múltiplo/patologia , Recidiva , Estereoisomerismo , Falha de Tratamento , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
19.
ACS Med Chem Lett ; 10(12): 1592-1602, 2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31857833

RESUMO

Many cellular processes and pathways are mediated by the regulation of protein-protein complexes. For example, E3 ubiquitin ligases recruit substrate proteins and transfer a ubiquitin tag to target those proteins for destruction by the proteasome. It has now been shown that this cellular process for protein destruction can be redirected by small molecules in both laboratory and clinical settings. This presents a new paradigm in drug discovery, enabling the rapid removal of target proteins linked to disease. In this Innovations review, we will describe the work done on cereblon as a case study on the different strategies available for targeted protein degradation.

20.
PLoS Pathog ; 15(4): e1007698, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30943267

RESUMO

Chlamydia trachomatis is the most common cause of bacterial sexually transmitted infection, responsible for millions of infections each year. Despite this high prevalence, the elucidation of the molecular mechanisms of Chlamydia pathogenesis has been difficult due to limitations in genetic tools and its intracellular developmental cycle. Within a host epithelial cell, chlamydiae replicate within a vacuole called the inclusion. Many Chlamydia-host interactions are thought to be mediated by the Inc family of type III secreted proteins that are anchored in the inclusion membrane, but their array of host targets are largely unknown. To investigate how the inclusion membrane proteome changes over the course of an infected cell, we have adapted the APEX2 system of proximity-dependent biotinylation. APEX2 is capable of specifically labeling proteins within a 20 nm radius in living cells. We transformed C. trachomatis to express the enzyme APEX2 fused to known inclusion membrane proteins, allowing biotinylation and purification of inclusion-associated proteins. Using quantitative mass spectrometry against APEX2 labeled samples, we identified over 400 proteins associated with the inclusion membrane at early, middle, and late stages of epithelial cell infection. This system was sensitive enough to detect inclusion interacting proteins early in the developmental cycle, at 8 hours post infection, a previously intractable time point. Mass spectrometry analysis revealed a novel, early association between C. trachomatis inclusions and endoplasmic reticulum exit sites (ERES), functional regions of the ER where COPII-coated vesicles originate. Pharmacological and genetic disruption of ERES function severely restricted early chlamydial growth and the development of infectious progeny. APEX2 is therefore a powerful in situ approach for identifying critical protein interactions on the membranes of pathogen-containing vacuoles. Furthermore, the data derived from proteomic mapping of Chlamydia inclusions has illuminated an important functional role for ERES in promoting chlamydial developmental growth.


Assuntos
Proteínas de Bactérias/análise , Infecções por Chlamydia/metabolismo , Retículo Endoplasmático/metabolismo , Corpos de Inclusão/metabolismo , Marcação por Isótopo/métodos , Proteínas de Membrana/análise , Proteoma/análise , Chlamydia/isolamento & purificação , Infecções por Chlamydia/microbiologia , Retículo Endoplasmático/microbiologia , Células HeLa , Interações Hospedeiro-Patógeno , Humanos , Corpos de Inclusão/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...