Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biol Rhythms ; 33(5): 497-514, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30175684

RESUMO

Within the suprachiasmatic nucleus (SCN)-the locus of the master circadian clock- transcriptional regulation via the CREB/CRE pathway is implicated in the functioning of the molecular clock timing process, and is a key conduit through which photic input entrains the oscillator. One event driving CRE-mediated transcription is the phosphorylation of CREB at serine 133 (Ser133). Indeed, numerous reporter gene assays have shown that an alanine point mutation in Ser133 reduces CREB-mediated transcription. Here, we sought to examine the contribution of Ser133 phosphorylation to the functional role of CREB in SCN clock physiology in vivo. To this end, we used a CREB knock-in mouse strain, in which Ser133 was mutated to alanine (S/A CREB). Under a standard 12 h light-dark cycle, S/A CREB mice exhibited a marked alteration in clock-regulated wheel running activity. Relative to WT mice, S/A CREB mice had highly fragmented bouts of locomotor activity during the night phase, elevated daytime activity, and a delayed phase angle of entrainment. Further, under free-running conditions, S/A CREB mice had a significantly longer tau than WT mice and reduced activity amplitude. In S/A CREB mice, light-evoked clock entrainment, using both Aschoff type 1 and 6 h "jet lag" paradigms, was markedly reduced relative to WT mice. S/A CREB mice exhibited attenuated transcriptional drive, as assessed by examining both clock-gated and light-evoked gene expression. Finally, SCN slice culture imaging detected a marked disruption in cellular clock phase synchrony following a phase-resetting stimulus in S/A CREB mice. Together, these data indicate that signaling through CREB phosphorylation at Ser133 is critical for the functional fidelity of both SCN timing and entrainment.


Assuntos
Relógios Circadianos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Serina/metabolismo , Núcleo Supraquiasmático/fisiologia , Alanina/genética , Animais , Ritmo Circadiano , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Técnicas de Introdução de Genes , Camundongos , Atividade Motora , Proteínas Circadianas Period/genética , Fosforilação , Serina/genética , Proteínas tau/metabolismo
2.
Learn Mem ; 25(5): 214-229, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29661834

RESUMO

The microRNA miR-132 serves as a key regulator of a wide range of plasticity-associated processes in the central nervous system. Interestingly, miR-132 expression has also been shown to be under the control of the circadian timing system. This finding, coupled with work showing that miR-132 is expressed in the hippocampus, where it influences neuronal morphology and memory, led us to test the idea that daily rhythms in miR-132 within the forebrain modulate cognition as a function of circadian time. Here, we show that hippocampal miR-132 expression is gated by the time-of-day, with peak levels occurring during the circadian night. Further, in miR-132 knockout mice and in transgenic mice, where miR-132 is constitutively expressed under the control of the tetracycline regulator system, we found that time-of-day dependent memory recall (as assessed via novel object location and contextual fear conditioning paradigms) was suppressed. Given that miRNAs exert their functional effects via the suppression of target gene expression, we examined the effects that transgenic miR-132 manipulations have on MeCP2 and Sirt1-two miR-132 targets that are associated with neuronal plasticity and cognition. In mice where miR-132 was either knocked out, or transgenically expressed, rhythmic expression of MeCP2 and Sirt1 was suppressed. Taken together, these results raise the prospect that miR-132 serves as a key route through which the circadian timing system imparts a daily rhythm on cognitive capacity.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Cognição/fisiologia , Hipocampo/metabolismo , MicroRNAs/metabolismo , Plasticidade Neuronal , Animais , Condicionamento Clássico , Medo , Feminino , Masculino , Rememoração Mental/fisiologia , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Neurônios/metabolismo , Sirtuína 1/metabolismo
3.
RNA Dis ; 3(2)2016.
Artigo em Inglês | MEDLINE | ID: mdl-27713923

RESUMO

The microRNA (miRNA) class of small (typically 22-24 nt) non-coding RNA affects a wide range of physiological processes in the mammalian central nervous system (CNS). By acting as potent regulators of mRNA translation and stability, miRNAs fine-tune the expression of a multitude of genes that play critical roles in complex cognitive processes, including learning and memory. Of note, within the CNS, miRNAs can be expressed in an inducible, and cell-type specific manner. Here, we provide a brief overview of the expression and functional effects of the miR-132/212 gene locus in forebrain circuits of the CNS, and then discuss a recent publication that explored the contributions of miR-132 and miR-212 to cognition and to transcriptome regulation. We also discuss mechanisms by which synaptic activity regulates miR-132/212 expression, how miR-132 and miR-212 affect neuronal plasticity, and how the dysregulation of these two miRNAs could contribute to the development of cognitive impairments.

4.
Neuroscience ; 331: 1-12, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27298008

RESUMO

Nuclear distribution element-like 1 (NDEL1/NUDEL) is a mammalian homolog of the Aspergillus nidulans nuclear distribution molecule NudE. NDEL1 plays a critical role in neuronal migration, neurite outgrowth and neuronal positioning during brain development; however within the adult central nervous system, limited information is available regarding NDEL1 expression and functions. Here, the goal was to examine inducible NDEL1 expression in the adult mouse forebrain. Immunolabeling revealed NDEL1 within the forebrain, including the cortex and hippocampus, as well as the midbrain and hypothalamus. Expression was principally localized to perikarya. Using a combination of immunolabeling and RNA seq profiling, we detected a marked and long-lasting upregulation of NDEL1 expression within the hippocampus following a pilocarpine-evoked repetitive seizure paradigm. Chromatin immunoprecipitation (ChIP) analysis identified a cAMP response element-binding protein (CREB) binding site within the CpG island proximal to the NDEL1 gene, and in vivo transgenic repression of CREB led to a marked downregulation of seizure-evoked NDEL1 expression. Together these data indicate that NDEL1 is inducibly expressed in the adult nervous system, and that signaling via the CREB/CRE transcriptional pathway is likely involved. The role of NDEL1 in neuronal migration and neurite outgrowth during development raises the interesting prospect that inducible NDEL1 in the mature nervous system could contribute to the well-characterized structural and functional plasticity resulting from repetitive seizure activity.


Assuntos
Proteínas de Transporte/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Prosencéfalo/metabolismo , Estado Epiléptico/metabolismo , Animais , Proteínas de Transporte/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Modelos Animais de Doenças , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Pilocarpina , Prosencéfalo/patologia , Estado Epiléptico/patologia
5.
Learn Mem ; 23(2): 61-71, 2016 02.
Artigo em Inglês | MEDLINE | ID: mdl-26773099

RESUMO

miR-132 and miR-212 are structurally related microRNAs that have been found to exert powerful modulatory effects within the central nervous system (CNS). Notably, these microRNAs are tandomly processed from the same noncoding transcript, and share a common seed sequence: thus it has been difficult to assess the distinct contribution of each microRNA to gene expression within the CNS. Here, we employed a combination of conditional knockout and transgenic mouse models to examine the contribution of the miR-132/-212 gene locus to learning and memory, and then to assess the distinct effects that each microRNA has on hippocampal gene expression. Using a conditional deletion approach, we show that miR-132/-212 double-knockout mice exhibit significant cognitive deficits in spatial memory, recognition memory, and in tests of novel object recognition. Next, we utilized transgenic miR-132 and miR-212 overexpression mouse lines and the miR-132/-212 double-knockout line to explore the distinct effects of these two miRNAs on the transcriptional profile of the hippocampus. Illumina sequencing revealed that miR-132/-212 deletion increased the expression of 1138 genes; Venn analysis showed that 96 of these genes were also downregulated in mice overexpressing miR-132. Of the 58 genes that were decreased in animals overexpressing miR-212, only four of them were also increased in the knockout line. Functional gene ontology analysis of downregulated genes revealed significant enrichment of genes related to synaptic transmission, neuronal proliferation, and morphogenesis, processes known for their roles in learning, and memory formation. These data, coupled with previous studies, firmly establish a role for the miR-132/-212 gene locus as a key regulator of cognitive capacity. Further, although miR-132 and miR-212 share a seed sequence, these data indicate that these miRNAs do not exhibit strongly overlapping mRNA targeting profiles, thus indicating that these two genes may function in a complex, nonredundant manner to shape the transcriptional profile of the CNS. The dysregulation of miR-132/-212 expression could contribute to signaling mechanisms that are involved in an array of cognitive disorders.


Assuntos
Hipocampo/metabolismo , Hipocampo/fisiologia , Memória/fisiologia , MicroRNAs/fisiologia , Neurônios/metabolismo , Prosencéfalo/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Perfilação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , MicroRNAs/genética , Reconhecimento Psicológico/fisiologia , Memória Espacial/fisiologia , Sintaxina 1/metabolismo , Transcriptoma
6.
Sci Rep ; 4: 6930, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25373493

RESUMO

Status epilepticus (SE) is a life-threatening condition that can give rise to a number of neurological disorders, including learning deficits, depression, and epilepsy. Many of the effects of SE appear to be mediated by alterations in gene expression. To gain deeper insight into how SE affects the transcriptome, we employed the pilocarpine SE model in mice and Illumina-based high-throughput sequencing to characterize alterations in gene expression from the induction of SE, to the development of spontaneous seizure activity. While some genes were upregulated over the entire course of the pathological progression, each of the three sequenced time points (12-hour, 10-days and 6-weeks post-SE) had a largely unique transcriptional profile. Hence, genes that regulate synaptic physiology and transcription were most prominently altered at 12-hours post-SE; at 10-days post-SE, marked changes in metabolic and homeostatic gene expression were detected; at 6-weeks, substantial changes in the expression of cell excitability and morphogenesis genes were detected. At the level of cell signaling, KEGG analysis revealed dynamic changes within the MAPK pathways, as well as in CREB-associated gene expression. Notably, the inducible expression of several noncoding transcripts was also detected. These findings offer potential new insights into the cellular events that shape SE-evoked pathology.


Assuntos
Hipocampo/metabolismo , Neurônios/metabolismo , RNA Mensageiro/metabolismo , RNA não Traduzido/metabolismo , Estado Epiléptico/genética , Transcriptoma , Animais , Sequência de Bases , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Hipocampo/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Neurônios/patologia , Pilocarpina , RNA Mensageiro/genética , RNA não Traduzido/genética , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/metabolismo , Estado Epiléptico/patologia , Sinapses/metabolismo , Sinapses/patologia , Transmissão Sináptica
7.
Cell Mol Neurobiol ; 34(1): 17-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24213247

RESUMO

Major depressive disorders are common and disabling conditions associated with significant psychosocial impairment and suicide risk. At least 3-4 % of all depressive individuals die by suicide. Evidence suggests that small non-coding RNAs, in particular microRNAs (miRNAs), play a critical role in major affective disorders as well as suicide. We performed a detailed review of the current literature on miRNAs and their targets in major depression and related disorders as well as suicidal behavior, with a specific focus on miR-185 and miR-491-3p, which have been suggested to participate in the pathogenesis of major depression and/or suicide. miRNAs play a fundamental role in the development of the brain. Several miRNAs are reported to influence neuronal and circuit formation by negatively regulating gene expression. Global miRNA reduced expression was found in the prefrontal cortex of depressed suicide completers when compared to that of nonpsychiatric controls who died of other causes. One particular miRNA, miR-185, was reported to regulate TrkB-T1, which has been associated with suicidal behavior upon truncation. Furthermore, cAMP response element-binding protein-brain-derived neurotrophic factor pathways may regulate, through miRNAs, the homeostasis of neural and synaptic pathways playing a crucial role in major depression. miRNAs have gained attention as key players involved in nervous system development, physiology, and disease. Further evidence is needed to clarify the exact role that miRNAs play in major depression and related disorders and suicidal behavior.


Assuntos
Transtorno Depressivo/genética , MicroRNAs/metabolismo , Suicídio , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Humanos , MicroRNAs/genética , Estresse Psicológico/genética , Suicídio/psicologia
9.
Neuropsychiatr Dis Treat ; 9: 1011-21, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23935365

RESUMO

Depression is a potentially life-threatening mental disorder affecting approximately 300 million people worldwide. Despite much effort, the molecular underpinnings of clinical depression remain poorly defined, and current treatments carry limited therapeutic efficacy and potentially burdensome side effects. Recently, small noncoding RNA molecules known as microRNA (miRNA) have gained prominence as a target for therapeutic intervention, given their capacity to regulate neuronal physiology. Further, mounting evidence suggests a prominent role for miRNA in depressive molecular signaling. Recent studies have demonstrated that dysregulation of miRNA expression occurs in animal models of depression, and in the post-mortem tissue of clinically depressed patients. Investigations into depression-associated miRNA disruption reveals dramatic effects on downstream targets, many of which are thought to contribute to depressive symptoms. Furthermore, selective serotonin reuptake inhibitors, as well as other antidepressant drugs, have the capacity to reverse aberrant depressive miRNA expression and their downstream targets. Given the powerful effects that miRNA have on the central nervous system transcriptome, and the aforementioned studies, there is a compelling rationale to begin to assess the potential contribution of miRNA to depressive etiology. Here, we review the molecular biology of miRNA, our current understanding of miRNA in relation to clinical depression, and the utility of targeting miRNA for antidepressant treatment.

10.
PLoS One ; 8(6): e64658, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23762244

RESUMO

Neurotrophin-regulated gene expression is believed to play a key role in long-term changes in synaptic structure and the formation of dendritic spines. Brain-derived neurotrophic factor (BDNF) has been shown to induce increases in dendritic spine formation, and this process is thought to function in part by stimulating CREB-dependent transcriptional changes. To identify CREB-regulated genes linked to BDNF-induced synaptogenesis, we profiled transcriptional occupancy of CREB in hippocampal neurons. Interestingly, de novo motif analysis of hippocampal ChIP-Seq data identified a non-canonical CRE motif (TGGCG) that was enriched at CREB target regions and conferred CREB-responsiveness. Because cytoskeletal remodeling is an essential element of the formation of dendritic spines, within our screens we focused our attention on genes previously identified as inhibitors of RhoA GTPase. Bioinformatic analyses identified dozens of candidate CREB target genes known to regulate synaptic architecture and function. We showed that two of these, the RhoA inhibitors Par6C (Pard6A) and Rnd3 (RhoE), are BDNF-induced CREB-regulated genes. Interestingly, CREB occupied a cluster of non-canonical CRE motifs in the Rnd3 promoter region. Lastly, we show that BDNF-stimulated synaptogenesis requires the expression of Par6C and Rnd3, and that overexpression of either protein is sufficient to increase synaptogenesis. Thus, we propose that BDNF can regulate formation of functional synapses by increasing the expression of the RhoA inhibitors, Par6C and Rnd3. This study shows that genome-wide analyses of CREB target genes can facilitate the discovery of new regulators of synaptogenesis.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas de Transporte/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Espinhas Dendríticas/genética , Hipocampo/metabolismo , Sinapses/genética , Proteínas rho de Ligação ao GTP/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Sítios de Ligação , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Transporte/metabolismo , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Espinhas Dendríticas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Estudo de Associação Genômica Ampla , Hipocampo/citologia , Hipocampo/crescimento & desenvolvimento , Neurogênese/genética , Regiões Promotoras Genéticas , Ligação Proteica , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Sinapses/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
11.
Brain Struct Funct ; 218(3): 817-31, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-22706759

RESUMO

Within the central nervous system, microRNAs have emerged as important effectors of an array of developmental, physiological, and cognitive processes. Along these lines, the CREB-regulated microRNA miR-132 has been shown to influence neuronal maturation via its effects on dendritic arborization and spinogenesis. In the mature nervous system, dysregulation of miR-132 has been suggested to play a role in a number of neurocognitive disorders characterized by aberrant synaptogenesis. However, little is known about the inducible expression and function of miR-132 under normal physiological conditions in vivo. Here, we begin to explore this question within the context of learning and memory. Using in situ hybridization, we show that the presentation of a spatial memory task induced a significant ~1.5-fold increase in miR-132 expression within the CA1, CA3, and GCL excitatory cell layers of the hippocampus. To examine the role of miR-132 in hippocampal-dependent learning and memory, we employ a doxycycline-regulated miR-132 transgenic mouse strain to drive varying levels of transgenic miR-132 expression. These studies revealed that relatively low levels of transgenic miR-132 expression, paralleling the level of expression in the hippocampus following a spatial memory task, significantly enhanced cognitive capacity. In contrast, higher (supra-physiological) levels of miR-132 (>3-fold) inhibited learning. Interestingly, both the impaired cognition and elevated levels of dendritic spines resulting from supra-physiological levels of transgenic miR-132 were reversed by doxycycline suppression of transgene expression. Together, these data indicate that miR-132 functions as a key activity-dependent regulator of cognition, and that miR-132 expression must be maintained within a limited range to ensure normal learning and memory formation.


Assuntos
Cognição/fisiologia , Regulação da Expressão Gênica/genética , MicroRNAs/metabolismo , Análise de Variância , Animais , Contagem de Células , Transtornos Cognitivos/genética , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Doxiciclina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Hipocampo/metabolismo , Aprendizagem em Labirinto , Camundongos , Camundongos Transgênicos , MicroRNAs/genética , Proteína Oncogênica v-akt/metabolismo , Reconhecimento Visual de Modelos/fisiologia , Proteínas Tirosina Quinases/metabolismo , RNA Mensageiro/metabolismo , Percepção Espacial/fisiologia , Fatores de Tempo
12.
Learn Mem ; 19(11): 550-60, 2012 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-23077336

RESUMO

Environmental enrichment (EE) has marked beneficial effects on cognitive capacity. Given the possibility that this form of neuronal plasticity could function via the actuation of the same cellular signaling pathways that underlie learning/memory formation, we examined whether the MAPK cascade effector, mitogen/stress-activated kinase 1 (MSK1), could play a role in this process. MSK1 functions as a key signaling intermediate that couples changes in neuronal activity into inducible gene expression, neuronal plasticity, and learning/memory. Here, we show that MSK1 is expressed in excitatory cell layers of the hippocampus, progenitor cells of the subgranular zone (SGZ), and adult-born immature neurons. MSK1(-/-) mice exhibit reduced spinogenesis and decreased dendritic branching complexity in hippocampal neurons, compared with WT mice. Further, in MSK1(-/-) mice, progenitor cell proliferation within the SGZ was significantly reduced and, correspondingly, the number of immature neurons within the dentate gyrus was significantly reduced. Consistent with prior work, MSK1(-/-) mice displayed deficits in both spatial and recognition memory tasks. Strikingly, cognitive enhancement resulting from a 40-d period of EE was markedly reduced in MSK1(-/-) animals. MSK1(-/-) mice exhibited reduced levels of EE-induced spinogenesis and SGZ progenitor proliferation. Taken together, these data reveal that MSK1 serves as a critical regulator of hippocampal physiology and function and that MSK1 serves as a key conduit by which enriching stimuli augment cellular plasticity and cognition.


Assuntos
Cognição/fisiologia , Meio Ambiente , Hipocampo/fisiologia , Plasticidade Neuronal/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Animais , Western Blotting , Proliferação de Células , Imunofluorescência , Abrigo para Animais , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/metabolismo , Neurogênese/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/genética
13.
Genome Med ; 3(2): 10, 2011 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-21345247

RESUMO

The biochemical activity of a stunning diversity of cell types and organ systems is shaped by a 24-hour (circadian) clock. This rhythmic drive to a good deal of the transcriptome (up to 15% of all coding genes) imparts circadian modulation over a wide range of physiological and behavioral processes (from cell division to cognition). Further, dysregulation of the clock has been implicated in the pathogenesis of a large and diverse array of disorders, such as hypertension, cancer and depression. Indeed, the possibility of utilizing therapeutic approaches that target clock physiology (that is, chronotherapy) has gained broad interest. However, a deeper understanding of the underlying molecular mechanisms that modulate the clock, and give rise to organ-specific clock transcriptomes, will be required to fully realize the power of chronotherapies. Recently, microRNAs have emerged as significant players in circadian clock timing, thus raising the possibility that clock-controlled microRNAs could contribute to disorders of the human circadian timing system. Here, we highlight recent work revealing a key role for microRNAs in clock physiology, and discuss potential approaches to unlocking their utility as effectors of circadian physiology and pathophysiology.

14.
PLoS One ; 5(11): e15497, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21124738

RESUMO

Inducible gene expression plays a central role in neuronal plasticity, learning, and memory, and dysfunction of the underlying molecular events can lead to severe neuronal disorders. In addition to coding transcripts (mRNAs), non-coding microRNAs (miRNAs) appear to play a role in these processes. For instance, the CREB-regulated miRNA miR132 has been shown to affect neuronal structure in an activity-dependent manner, yet the details of its physiological effects and the behavioral consequences in vivo remain unclear. To examine these questions, we employed a transgenic mouse strain that expresses miR132 in forebrain neurons. Morphometric analysis of hippocampal neurons revealed that transgenic miR132 triggers a marked increase in dendritic spine density. Additionally, miR132 transgenic mice exhibited a decrease in the expression of MeCP2, a protein implicated in Rett Syndrome and other disorders of mental retardation. Consistent with these findings, miR132 transgenic mice displayed significant deficits in novel object recognition. Together, these data support a role for miR132 as a regulator of neuronal structure and function, and raise the possibility that dysregulation of miR132 could contribute to an array of cognitive disorders.


Assuntos
Espinhas Dendríticas/metabolismo , Memória/fisiologia , MicroRNAs/metabolismo , Neurônios/metabolismo , Animais , Western Blotting , Espinhas Dendríticas/genética , Feminino , Imunofluorescência , Hipocampo/metabolismo , Hipocampo/fisiologia , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Proteína 2 de Ligação a Metil-CpG/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , MicroRNAs/genética , Reconhecimento Visual de Modelos/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
J Biol Rhythms ; 25(6): 410-20, 2010 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21135157

RESUMO

The transcriptional feedback circuit, which is at the core of the suprachiasmatic nucleus (SCN) circadian (i.e., 24 h) clock, is tightly coupled to both external entrainment cues, such as light, as well as rhythmic cues that arise on a system-wide level within the SCN. One potential signaling pathway by which these cues are conveyed to the molecular clock is the CREB/CRE transcriptional cascade. In this study, we employed a tetracycline-inducible CREB repressor mouse strain, in which approximately 60% of the SCN neurons express the transgene, to test CREB functionality in the clock and its effects on overt rhythmicity. We show that attenuated CREB signaling in the SCN led to a significant reduction in light-evoked clock entrainment. An examination of circadian timing revealed that CREB repressor mice exhibited normal free-running rhythms in the absence of external lighting cues. However, under conditions of constant light, which typically leads to a lengthening of the circadian period, CREB repressor mice exhibited a dramatic arrhythmic phenotype, which could be reversed with doxycycline. At a cellular level, the repression of CREB led to a significant reduction in both the expression of the circadian clock proteins PERIOD1 and PERIOD2 and the clock output hormones AVP and VIP. Together, these data support the idea that the CRE transcriptional pathway orchestrates transcriptional events that are essential for both the maintenance of SCN timing and light entrainment of the circadian clock.


Assuntos
Relógios Circadianos/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/fisiologia , Transdução de Sinais/fisiologia , Núcleo Supraquiasmático/fisiologia , Animais , Relógios Circadianos/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/genética , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Doxiciclina/farmacologia , Imunofluorescência , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Luz , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Atividade Motora/efeitos da radiação , Neurônios/metabolismo , Proteínas Circadianas Period/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/efeitos da radiação , Núcleo Supraquiasmático/metabolismo , Fatores de Tempo , Peptídeo Intestinal Vasoativo/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...