Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Stem Cell Reports ; 17(7): 1620-1635, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750047

RESUMO

Astrocytes are emerging key players in neurological disorders. However, their role in disease etiology is poorly understood owing to inaccessibility of primary human astrocytes. Pluripotent stem cell-derived cells fail to mimic age and due to their clonal origin do not mimic genetic heterogeneity of patients. In contrast, direct conversion constitutes an attractive approach to generate human astrocytes that capture age and genetic diversity. We describe efficient direct conversion of human fibroblasts to functional induced astrocytes (iAs). Expression of the minimal combination Sox9 and Nfib generates iAs with molecular, phenotypic, and functional properties resembling primary human astrocytes. iAs could be obtained by conversion of fibroblasts covering the entire human lifespan. Importantly, iAs supported function of induced neurons obtained through direct conversion from the same fibroblast population. Fibroblast-derived iAs will become a useful tool to elucidate the biology of astrocytes and complement current in vitro models for studies of late-onset neurological disorders.


Assuntos
Astrócitos , Células-Tronco Pluripotentes , Astrócitos/metabolismo , Células Cultivadas , Fibroblastos/metabolismo , Humanos , Neurônios , Células-Tronco Pluripotentes/metabolismo
2.
Nat Methods ; 16(1): 134, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30514884

RESUMO

In the version of Supplementary Fig. 1 originally published with this paper, some images in panel e were accidental duplicates of images in panel b. This error has been corrected in the online integrated supplementary information and in the Supplementary Information PDF.

3.
Nat Methods ; 15(9): 693-696, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30127505

RESUMO

The derivation of astrocytes from human pluripotent stem cells is currently slow and inefficient. We demonstrate that overexpression of the transcription factors SOX9 and NFIB in human pluripotent stem cells rapidly and efficiently yields homogeneous populations of induced astrocytes. In our study these cells exhibited molecular and functional properties resembling those of adult human astrocytes and were deemed suitable for disease modeling. Our method provides new possibilities for the study of human astrocytes in health and disease.


Assuntos
Astrócitos/citologia , Diferenciação Celular , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Fatores de Transcrição SOX9/metabolismo , Humanos , Fatores de Transcrição NFI/metabolismo
4.
Front Cell Neurosci ; 11: 433, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29375319

RESUMO

Parvalbumin- (PV-) containing basket cells constitute perisomatic GABAergic inhibitory interneurons innervating principal cells at perisomatic area, a strategic location that allows them to efficiently control the output and synchronize oscillatory activity at gamma frequency (30-90 Hz) oscillations. This oscillatory activity can convert into higher frequency epileptiform activity, and therefore could play an important role in the generation of seizures. However, the role of endogenous modulators of seizure activity, such as Neuropeptide Y (NPY), has not been fully explored in at PV input and output synapses. Here, using selective optogenetic activation of PV cells in the hippocampus, we show that seizures, induced by rapid kindling (RK) stimulations, enhance gamma-aminobutyric acid (GABA) release from PV cells onto dentate gyrus (DG) granule cells (GC). However, PV-GC synapses did not differ between controls and kindled animals in terms of GABA release probability, short-term plasticity and sensitivity to NPY. Kinetics of gamma-aminobutyric acid A (GABA-A) mediated currents in postsynaptic GC were also unaffected. When challenged by repetitive high-frequency optogenetic stimulations, PV synapses in kindled animals responded with enhanced GABA release onto GC. These results unveil a mechanism that might possibly contribute to the generation of abnormal synchrony and maintenance of epileptic seizures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...