Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 18(8): 5248-5256, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-29947212

RESUMO

All biogels are heterogeneous, consisting of functional groups with different biophysical properties arrayed on spatially disordered polymer networks. Nanoparticles diffusing in such biogels experience a mixture of attractive and repulsive interactions. Here, we present experimental and theoretical studies of charged particle diffusion in gels with a random distribution of attractive and repulsive electrostatic interaction sites inside the gel. In addition to interaction disorder, we theoretically investigate the effect of spatial disorder of the polymer network. Our coarse-grained simulations reveal that attractive interactions primarily determine the diffusive behavior of the particles in systems with mixed attractive and repulsive interactions. As a consequence, charged particles of either sign are immobilized in mixed cationic/anionic gels because they are trapped near oppositely charged interaction sites, whereas neutral particles diffuse rapidly. Even small fractions of oppositely charged interaction sites lead to strong trapping of a charged particle. Translational diffusion coefficients of charged probe molecules in gels consisting of mixed cationic and anionic dextran polymers are determined by fluorescence correlation spectroscopy and quantitatively confirm our theoretical predictions.

2.
Biophys J ; 114(11): 2653-2664, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29874615

RESUMO

Using stochastic simulations, we study the influence of spatial disorder on the diffusion of a single particle through a gel that consists of rigid, straight fibers. The interaction between the particle and the gel fibers consists of an invariant short-range repulsion, the steric part, and an interaction part that can be attractive or repulsive and of varying range. The effect that spatial disorder of the gel structure has on the particle diffusivity depends crucially on the presence of nonsteric interactions. For attractive interactions, disorder slows down diffusion, because in disordered gels, the particle becomes strongly trapped in regions of locally increased fiber density. For repulsive interactions, the diffusivity is minimal for intermediate disorder strength, because highly disordered lattices exhibit abundant passageways of locally low fiber density. The comparison with experimental data on protein and fluorophore diffusion through various hydrogels is favorable. Our findings shed light on particle-diffusion mechanisms in biogels and thus on biological barrier properties, which can be helpful for the optimal design of synthetic diffusors as well as synthetic mucus constructs.


Assuntos
Géis/química , Modelos Moleculares , Difusão , Processos Estocásticos
3.
Eur Phys J E Soft Matter ; 39(5): 53, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27167077

RESUMO

The understanding of particle transport mechanisms in biological and synthetic hydrogels is crucial for the development of advanced drug delivery methods. We propose a simple model for the diffusion of charged nanoparticles in cross-linked, charged hydrogels based on a cubic periodic environment and an electrostatic interaction potential of varying range and strength, encompassing attractive and repulsive scenarios. The long-time diffusive properties are investigated by use of Brownian dynamics simulations and analytical methods. A number of experimentally observed phenomena attributed to nonsteric interactions between hydrogel polymers and diffusing particle are naturally reproduced by our model. Charged particles diffuse slower than uncharged particles, regardless of the sign of the surface charge, but with a stronger hindrance effect for attractive electrostatic interactions. This is explained in terms of charged particles sticking to the polymer network in regions of strong opposite charge and their exclusion from similarly charged regions. In the case of attractive interactions between hydrogel polymers and the diffusing particle, smaller charged particles diffuse slower than larger ones. This stands in contrast to a size filtering scenario but is in agreement with experimental findings. In the case of repulsive interactions, a range of differently sized particles diffuse equally fast. We compare our model predictions with published experiments on charged particle diffusion in hydrogels and confirm that electrostatic interactions are a key factor influencing the diffusivity of charged nanoparticles and that oppositely charged gels are much more effective in slowing down a charged particle than similarly charged gels.


Assuntos
Hidrogéis/química , Nanopartículas/química , Tamanho da Partícula , Sais/química , Difusão , Eletricidade Estática
4.
Biophys J ; 108(3): 530-9, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25650921

RESUMO

Transport processes within biological polymer networks, including mucus and the extracellular matrix, play an important role in the human body, where they serve as a filter for the exchange of molecules and nanoparticles. Such polymer networks are complex and heterogeneous hydrogel environments that regulate diffusive processes through finely tuned particle-network interactions. In this work, we present experimental and theoretical studies to examine the role of electrostatics on the basic mechanisms governing the diffusion of charged probe molecules inside model polymer networks. Translational diffusion coefficients are determined by fluorescence correlation spectroscopy measurements for probe molecules in uncharged as well as cationic and anionic polymer solutions. We show that particle transport in the charged hydrogels is highly asymmetric, with diffusion slowed down much more by electrostatic attraction than by repulsion, and that the filtering capability of the gel is sensitive to the solution ionic strength. Brownian dynamics simulations of a simple model are used to examine key parameters, including interaction strength and interaction range within the model networks. Simulations, which are in quantitative agreement with our experiments, reveal the charge asymmetry to be due to the sticking of particles at the vertices of the oppositely charged polymer networks.


Assuntos
Hidrogéis/química , Eletricidade Estática , Transporte Biológico/efeitos dos fármacos , Simulação por Computador , Difusão , Humanos , Polietilenoglicóis/química , Cloreto de Sódio/farmacologia , Soluções , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...