Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front For Glob Change ; 4: 1-14, 2021 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35118374

RESUMO

Mangroves sequester significant quantities of organic carbon (C) because of high rates of burial in the soil and storage in biomass. We estimated mangrove forest C storage and accumulation rates in aboveground and belowground components among five sites along an urbanization gradient in the San Juan Bay Estuary, Puerto Rico. Sites included the highly urbanized and clogged Caño Martin Peña in the western half of the estuary, a series of lagoons in the center of the estuary, and a tropical forest reserve (Piñones) in the easternmost part. Radiometrically dated cores were used to determine sediment accretion and soil C storage and burial rates. Measurements of tree dendrometers coupled with allometric equations were used to estimate aboveground biomass. Estuary-wide mangrove forest C storage and accumulation rates were estimated using interpolation methods and coastal vegetation cover data. In recent decades (1970-2016), the highly urbanized Martin Peña East (MPE) site with low flushing had the highest C storage and burial rates among sites. The MPE soil carbon burial rate was over twice as great as global estimates. Mangrove forest C burial rates in recent decades were significantly greater than historic decades (1930-1970) at Cañno Martin Peña and Piñones. Although MPE and Piñones had similarly low flushing, the landscape settings (clogged canal vs forest reserve) and urbanization (high vs low) were different. Apparently, not only urbanization, but site-specific flushing patterns, landscape setting, and soil fertility affected soil C storage and burial rates. There was no difference in C burial rates between historic and recent decades at the San José and La Torrecilla lagoons. Mangrove forests had soil C burial rates ranging from 88 g m-2 y-1 at the San José lagoon to 469 g m-2 y-1 at the MPE in recent decades. Watershed anthropogenic CO2 emissions (1.56 million Mg C y-1) far exceeded the annual mangrove forest C storage rates (aboveground biomass plus soils: 17,713 Mg C y-1). A combination of maintaining healthy mangrove forests and reducing anthropogenic emissions might be necessary to mitigate greenhouse gas emissions in urban, tropical areas.

2.
Front For Glob Change ; 4: 1-765896, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-35059638

RESUMO

Tropical mangrove forests have been described as "coastal kidneys," promoting sediment deposition and filtering contaminants, including excess nutrients. Coastal areas throughout the world are experiencing increased human activities, resulting in altered geomorphology, hydrology, and nutrient inputs. To effectively manage and sustain coastal mangroves, it is important to understand nitrogen (N) storage and accumulation in systems where human activities are causing rapid changes in N inputs and cycling. We examined N storage and accumulation rates in recent (1970 - 2016) and historic (1930 - 1970) decades in the context of urbanization in the San Juan Bay Estuary (SJBE, Puerto Rico), using mangrove soil cores that were radiometrically dated. Local anthropogenic stressors can alter N storage rates in peri-urban mangrove systems either directly by increasing N soil fertility or indirectly by altering hydrology (e.g., dredging, filling, and canalization). Nitrogen accumulation rates were greater in recent decades than historic decades at Piñones Forest and Martin Peña East. Martin Peña East was characterized by high urbanization, and Piñones, by the least urbanization in the SJBE. The mangrove forest at Martin Peña East fringed a poorly drained canal and often received raw sewage inputs, with N accumulation rates ranging from 17.7 to 37.9 g -2 y-1 in recent decades. The Piñones Forest was isolated and had low flushing, possibly exacerbated by river damming, with N accumulation rates ranging from 18.6 to 24.2 g -2 y-1 in recent decades. Nearly all (96.3%) of the estuary-wide mangrove N (9.4 Mg ha-1) was stored in the soils with 7.1 Mg ha-1 sequestered during 1970-2017 (0-18 cm) and 2.3 Mg ha-1 during 1930-1970 (19-28 cm). Estuary-wide mangrove soil N accumulation rates were over twice as great in recent decades (0.18 ± 0.002 Mg ha-1y-1) than historically (0.08 ± 0.001 Mg ha-1y-1). Nitrogen accumulation rates in SJBE mangrove soils in recent times were twofold larger than the rate of human-consumed food N that is exported as wastewater (0.08 Mg ha-1 y-1), suggesting the potential for mangroves to sequester human-derived N. Conservation and effective management of mangrove forests and their surrounding watersheds in the Anthropocene are important for maintaining water quality in coastal communities throughout tropical regions.

3.
J Geophys Res Biogeosci ; 125(3)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32426203

RESUMO

Tropical urban estuaries are severely understudied. Little is known about the basic biogeochemical cycles and dominant ecosystem processes in these waterbodies, which are often low-lying and heavily modified. The San Juan Bay Estuary (SJBE) in San Juan, Puerto Rico is an example of such a system. Over the past 80 years, a portion of the estuary has filled in, changing the hydrodynamics and negatively affecting water quality. Here we sought to document these changes using ecological and biogeochemical measurements of surface sediments and bivalves. Measurements of sediment physical characteristics, organic matter content, and stable isotope ratios (δ13C, δ15N, δ34S) illustrated the effects of the closure of the Caño Martín Peña (CMP) on the hydrology and water quality of the enclosed and semienclosed parts of the estuary. The nitrogen stable isotope (δ15N) values were lowest in the CMP, the stretch of the SJBE that is characterized by waters with low dissolved oxygen and high fecal coliform concentrations. Despite this, the results of this study indicate that nitrogen (N) contributions from N-fixing, sulfate-reducing microbes may meet or even exceed contributions from urban runoff and sewage. While the importance of sulfate reducers in contributing N to mangrove ecosystems is well documented, this is the first indication that such processes could be dominant in an intensely urban system. It also underscores just how little we know about tropical coastal ecosystems in densely populated areas throughout the globe.

4.
Wetlands (Wilmington) ; 40(5): 1469-1480, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35783663

RESUMO

Mangroves are known to sequester carbon at rates exceeding even those of other tropical forests; however, to understand carbon cycling in these systems, soil-atmosphere fluxes and gas exchanges in mangrove-adjacent shallow waters need to be quantified. Further, despite the ever-increasing impact of development on mangrove systems, there is even less data on how subtropical, greenhouse gas (GHG) fluxes are affected by urbanization. We quantified carbon dioxide (CO2) and methane (CH4) fluxes from mangrove soils and adjacent, coastal waters along a gradient of urbanization in the densely-populated, subtropical San Juan Bay Estuary (PR). Edaphic (salinity, pH, surface temperature) factors among sites significantly covaried with GHG fluxes. We found that mangrove systems in more highly-urbanized reaches of the estuary were characterized by relatively lower porewater salinities and substantially larger GHG emissions, particularly CH4, which has a high global warming potential. The magnitude of the CO2 emissions was similar in the mangrove soils and adjacent waters, but the CH4 emissions in the adjacent waters were an order of magnitude higher than in the soils and showed a marked response to urbanization. This study underscores the importance of considering GHG emissions of adjacent waters in carbon cycling dynamics in urbanized, tropical mangrove systems.

5.
Mar Pollut Bull ; 150: 110745, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31784266

RESUMO

An experiment was conducted to examine the fractionation of nitrogen stable isotopes in a continuous culture system containing field collected estuarine phytoplankton and blue mussels, Mytilus edulis. Nitrate and phosphate were added to culture vessels at concentrations above ambient levels and nitrogen isotope ratios (δ15N) were measured in particulate matter (PM) and blue mussels over the course of the 15-day experiment. The added nutrients resulted in large productivity and chlorophyll increases in the system. Study results indicate that rapid and significant nitrogen isotope fractionation can occur during incorporation by phytoplankton grown under conditions of excess dissolved inorganic nitrogen, as shown by δ15N values depleted by as much as 9‰ in PM from the higher nutrient treatments. These lower δ15N values were also reflected in mussels exposed to culture vessels effluents. Therefore, nitrogen concentration needs to be considered when using δ15N values in biota as indicators of anthropogenic nitrogen inputs.


Assuntos
Monitoramento Ambiental , Mytilus edulis , Nitrogênio/análise , Poluentes da Água/análise , Animais , Aquicultura , Isótopos de Nitrogênio , Fitoplâncton
6.
PeerJ ; 7: e8074, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799073

RESUMO

Measurement of the apparent conductivity of salt marsh sediments using electromagnetic induction (EMI) is a rapid alternative to traditional methods of salinity determination that can be used to map soil salinity across a marsh surface. Soil salinity measures can provide information about marsh processes, since salinity is important in determining the structure and function of tidally influenced marsh communities. While EMI has been shown to accurately reflect salinity to a specified depth, more information is needed on the potential for spatial and temporal variability in apparent conductivity measures that may impact the interpretation of salinity data. In this study we mapped soil salinity at two salt marshes in the Narragansett Bay, RI estuary monthly over the course of several years to examine spatial and temporal trends in marsh salinity. Mean monthly calculated salinity was 25.8 ± 5.5 ppt at Narrow River marsh (NAR), located near the mouth of the Bay, and 17.7 ± 5.3 ppt at Passeonkquis marsh (PAS) located in the upper Bay. Salinity varied seasonally with both marshes, showing the lowest values (16.3 and 8.3 ppt, respectively) in April and highest values (35.4 and 26.2 ppt, respectively) in August. Contour plots of calculated salinities showed that while the mean whole-marsh calculated salinity at both sites changed over time, within-marsh patterns of higher versus lower salinity were maintained at NAR but changed over time at PAS. Calculated salinity was significantly negatively correlated with elevation at NAR during a sub-set of 12 sample events, but not at PAS. Best-supported linear regression models for both sites included one-month and 6-month cumulative rainfall, and tide state as potential factors driving observed changes in calculated salinity. Mapping apparent conductivity of salt marsh sediments may be useful both identifying within-marsh micro-habitats, and documenting marsh-wide changes in salinity over time.

7.
Ecosphere ; 9(8): e02329, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30505615

RESUMO

In a whole-ecosystem, nutrient addition experiment in the Plum Island Sound Estuary (Massachusetts), we tested the effects of nitrogen enrichment on the carbon and nitrogen contents, respiration, and strength of marsh soils. We measured soil shear strength within and across vegetation zones. We found significantly higher soil percent organic matter, carbon, and nitrogen in the long-term enriched marshes and higher soil respiration rates with longer duration of enrichment. The soil strength was similar in magnitude across depths and vegetation zones in the reference creeks, but showed signs of significant nutrient-mediated alteration in enriched creeks where shear strength at rooting depths of the low marsh-high marsh interface zone was significantly lower than at the sub-rooting depths or in the creek bank vegetation zone. To more closely examine the soil strength of the rooting (10-30 cm) and sub-rooting (40-60 cm) depths in the interface and creek bank vegetation zones, we calculated a vertical shear strength differential between these depths. We found significantly lower differentials in shear strength (rooting depth < sub-rooting depths) in the enriched creeks and in the interface zones. The discontinuities in the vertical and horizontal shear strength across the enriched marshes may contribute to observed fracturing and slumping occurring in the marsh systems. Tide gauge data also showed a pattern of rapid sea level rise for the period of the study, and changes in plant distribution patterns were indicative of increased flooding. Longer exposure times to nutrient-enriched waters and increased hydraulic energy associated with sea level rise may exacerbate creek bank sloughing. Additional research is needed, however, to better understand the interactions of nutrient enrichment and sea level rise on soil shear strength and stability of tidal salt marshes.

8.
Estuaries Coast ; 41(8): 2260-2276, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30971866

RESUMO

Over the past decade, nitrogen (N) loads to Narragansett Bay have decreased by more than 50%. These reductions were, in large part, the direct result of multiple wastewater treatment facility upgrades to tertiary treatment, a process which employs N removal. Here we document ecosystem response to the N reductions and assess how the distribution of sewage N in Narragansett Bay has changed from before, during, and shortly after the upgrades. While others have observed clear responses when data were considered annually, our seasonal and regional comparisons of pre- and post-tertiary treatment dissolved inorganic nitrogen (DIN) concentrations and Secchi depth data, from bay-wide surveys conducted periodically from the early 1970s through 2016, resulted in only a few subtle differences. Thus we sought to use stable isotope data to assess how sewage N is incorporated into the ecology of the Bay and how its distribution may have changed after the upgrades. The nitrogen (δ15N) and carbon (δ13C) stable isotope measurements of particulate matter served as a proxy for phytoplankton, while macroalgae served as short-term integrators of water column bio-available N, and hard clams (Mercenaria mercenaria) as integrators of water column production. In contrast to other estuarine stable isotope studies that have observed an increased influence of isotopically lower marine N when sewage N is reduced, the opposite has occurred in Narragansett Bay. The tertiary treatment upgrades have increased the effluent δ15N values by at least 2‰. The plants and animals throughout Narragansett Bay have similarly increased by 1-2‰, on average. In contrast, the δ13C values measured in particulate matter and hard clams have declined by about the same amount. The δ15N results indicated that, even after the N-reductions, sewage N still plays an important role in supporting primary and secondary production throughout the Bay. However, the δ13C suggest that overall net production in Narragansett Bay has decreased. In the five years after the major wastewater treatment facilities came on-line for nutrient removal, oligotrophication has begun but sewage remains the dominant source of N to Narragansett Bay.

9.
J Exp Mar Biol Ecol ; 486: 282-289, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35308104

RESUMO

New England salt marshes are susceptible to degradation and habitat loss as a result of increased periods of inundation as sea levels rise. Increased inundation may exacerbate marsh degradation that can result from crab burrowing and foraging. Most studies to date have focused on how crab burrowing and foraging can impact the dominant low marsh plant species, Spartina alterniflora. Here we used a mesocosm experiment to examine the relationship of foraging and burrowing activity in two dominant New England crab species, Sesarma reticulatum and Uca pugilator, and the combined effect of inundation, on the dominant high marsh plant species Spartina patens using a 3 × 2 factorial design with three crab treatments (Sesarma, Uca, control) at two levels of inundation (low, high). Plants were labeled with a nitrogen (N) stable isotope tracer to estimate plant consumption by the two crab species. At both levels of inundation, we found that S. reticulatum had a significant negative impact on both above- and below-ground biomass by physically clipping and uprooting the plants, whereas U. pugilator had no significant impact. Low inundation treatments for both crab species had significantly greater aboveground biomass than high inundation. Stable N isotope tracer levels were roughly the same for both S. reticulatum and U. pugilator tissue, suggesting that the impact of S. reticulatum on S. patens was not through consumption of the plants. Overall, our results suggest the potential for S. reticulatum to negatively impact marsh stability, and that effects of crab foraging behavior may be heightened by increased inundation.

10.
PLoS One ; 10(10): e0141529, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26510009

RESUMO

Over the past 50 years, mean annual water temperature in northeastern U.S. estuaries has increased by approximately 1.2°C, with most of the warming recorded in the winter and early spring. A recent survey and synthesis of data from four locations in Southern Rhode Island has led us to hypothesize that this warming may be amplified in the shallow (<1 m), nearshore portions of these estuaries. While intertidal areas are not typically selected as locations for long-term monitoring, we compiled data from published literature, theses, and reports that suggest that enhanced warming may be occurring, perhaps at rates three times higher than deeper estuarine waters. Warmer spring waters may be one of the factors influencing biota residing in intertidal regions both in general as well as at our specific sites. We observed greater abundance of fish, and size of Menidia sp., in recent (2010-2012) seine surveys compared to similar collections in 1962. While any linkages are speculative and data are preliminary, taken together they suggest that shallow intertidal portions of estuaries may be important places to look for the effects of climate change.


Assuntos
Mudança Climática , Ecossistema , Estuários , Aquecimento Global , Estações do Ano , Temperatura
11.
Ecol Appl ; 24(4): 633-49, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24988765

RESUMO

Marshes in the urban Jamaica Bay Estuary, New York, USA are disappearing at an average rate of 13 ha/yr, and multiple stressors (e.g., wastewater inputs, dredging activities, groundwater removal, and global warming) may be contributing to marsh losses. Among these stressors, wastewater nutrients are suspected to be an important contributing cause of marsh deterioration. We used census data, radiometric dating, stable nitrogen isotopes, and soil surveys to examine the temporal relationships between human population growth and soil nitrogen; and we evaluated soil structure with computer-aided tomography, surface elevation and sediment accretion trends, carbon dioxide emissions, and soil shear strength to examine differences among disappearing (Black Bank and Big Egg) and stable marshes (JoCo). Radiometric dating and nitrogen isotope analyses suggested a rapid increase in human wastewater nutrients beginning in the late 1840s, and a tapering off beginning in the 1930s when wastewater treatment plants (WWTPs) were first installed. Current WWTPs nutrient loads to Jamaica Bay are approximately 13 995 kg N/d and 2767 kg P/d. At Black Bank, the biomass and abundance of roots and rhizomes and percentage of organic matter on soil were significantly lower, rhizomes larger in diameter, carbon dioxide emission rates and peat particle density significantly greater, and soil strength significantly lower compared to the stable JoCo Marsh, suggesting Black Bank has elevated decomposition rates, more decomposed peat, and highly waterlogged peat. Despite these differences, the rates of accretion and surface elevation change were similar for both marshes, and the rates of elevation change approximated the long-term relative rate of sea level rise estimated from tide gauge data at nearby Sandy Hook, New Jersey. We hypothesize that Black Bank marsh kept pace with sea level rise by the accretion of material on the marsh surface, and the maintenance of soil volume through production of larger diameter rhizomes and swelling (dilation) of waterlogged peat. JoCo Marsh kept pace with sea-level rise through surface accretion and soil organic matter accumulation. Understanding the effects of multiple stressors, including nutrient enrichment, on soil structure, organic matter accumulation, and elevation change will better inform management decisions aimed at maintaining and restoring coastal marshes.


Assuntos
Conservação dos Recursos Naturais , Estuários , Nitrogênio/química , Solo/química , Animais , Cidades , New York , Poaceae/crescimento & desenvolvimento
12.
Ecol Appl ; 24(3): 457-66, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24834733

RESUMO

Coastal ecologists and managers have frequently used nitrogen stable isotopes (delta15N) to trace and monitor sources of anthropogenic nitrogen (N) in coastal ecosystems. However, the interpretation of delta15N data can often be challenging, as the isotope values fractionate substantially due to preferential retention and uptake by biota. There is a growing body of evidence that carbon isotopes may be a useful alternative indicator for eutrophication, as they may be sensitive to changes in primary production that result from anthropogenic nutrient inputs. We provide three examples of systems where delta13C values sensitively track phytoplankton production. First, earlier (1980s) mesocosm work established positive relationships between delta13C and dissolved inorganic nitrogen and dissolved silica concentrations. Consistent with these findings, a contemporary mesocosm experiment designed to replicate a temperate intertidal salt marsh environment also demonstrated that the system receiving supplementary nutrient additions had higher nutrient concentrations, higher chlorophyll concentrations, and higher delta13C values. This trend was particularly pronounced during the growing season, with differences less evident during senescence. And finally, these results were replicated in the open waters of Narragansett Bay, Rhode Island, USA, during a spring phytoplankton bloom. These three examples, taken together with the pre-existing body of literature, suggest that, at least in autotrophic, phytoplankton-dominated systems, delta13C values can be a useful and sensitive indicator of eutrophication.


Assuntos
Carbono/química , Monitoramento Ambiental , Eutrofização , Áreas Alagadas , Isótopos de Carbono , Estuários , Rhode Island , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...