Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Horm Behav ; 130: 104948, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33571507

RESUMO

Development of estrogen therapies targeting the ß (ERß) but not α (ERα) estrogen receptor is critically needed for the treatment of negative menopausal symptoms, as ERα activation increases health risks like cancer. Here, we determined the effects of long-term oral treatment with EGX358, a novel highly selective ERß agonist, on memory, vasodilation, and affect in young ovariectomized mice. Mice were orally gavaged daily for 9 weeks with vehicle, 17ß-estradiol (E2), the ERß agonist diarylpropionitrile (DPN), or EGX358 at doses that enhance memory when delivered acutely. Tail skin temperature was recorded as a proxy for vasodilation following injection of vehicle or senktide, a tachykinin receptor 3 agonist used to model hot flashes. Anxiety-like behavior was assessed in the open field (OF) and elevated plus maze (EPM), and depression-like behavior was measured in the tail suspension (TST) and forced swim tests (FST). Finally, memory was assessed in object recognition (OR) and object placement (OP) tasks. E2, DPN, and EGX358 reduced senktide-mediated increases in tail skin temperature compared to vehicle. All three treatments also enhanced memory in the OR and OP tasks, whereas vehicle did not. Although E2 increased time spent in the center of the OF, no other treatment effects were observed in the OF, EPM, TST, or FST. These data suggest that long-term ERß activation can reduce hot flash-like symptoms and enhance spatial and object recognition memories in ovariectomized mice. Thus, the highly selective ERß agonist EGX358 may be a promising avenue for reducing menopause-related hot flashes and memory dysfunction.


Assuntos
Receptor beta de Estrogênio , Preparações Farmacêuticas , Administração Oral , Animais , Estradiol/farmacologia , Receptor alfa de Estrogênio , Feminino , Humanos , Camundongos , Nitrilas/farmacologia , Ovariectomia , Vasodilatação
2.
Bioorg Med Chem ; 28(19): 115670, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32912438

RESUMO

A variety of 17α-triazolyl and 9α-cyano derivatives of estradiol were prepared and evaluated for binding to human ERß in both a TR-FRET assay, as well as ERß and ERα agonism in cell-based functional assays. 9α-Cyanoestradiol (5) was nearly equipotent as estradiol as an agonist for both ERß and ERα. The potency of the 17α-triazolylestradiol analogs is considerably more variable and depends on the nature of the 4-substituent of the triazole ring. While rigid protein docking simulations exhibited significant steric clashing, induced fit docking providing more protein flexibility revealed that the triazole linker of analogs 2d and 2e extends outside of the traditional ligand binding domain with the benzene ring located in the loop connecting helix 11 to helix 12.


Assuntos
Estradiol/farmacologia , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Estrogênios/farmacologia , Linhagem Celular , Relação Dose-Resposta a Droga , Estradiol/síntese química , Estradiol/química , Estrogênios/síntese química , Estrogênios/química , Humanos , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Relação Estrutura-Atividade
3.
Eur J Med Chem ; 157: 791-804, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30144697

RESUMO

A short and efficient route to 4-(4-hydroxyphenyl)cycloheptanemethanol was developed, which resulted in the preparation of a mixture of 4 stereoisomers. The stereoisomers were separated by preparative HPLC, and two of the stereoisomers identified by X-ray crystallography. The stereoisomers, as well as a small family of 4-cycloheptylphenol derivatives, were evaluated as estrogen receptor-beta agonists. The lead compound, 4-(4-hydroxyphenyl)cycloheptanemethanol was selective for activating ER relative to seven other nuclear hormone receptors, with 300-fold selectivity for the ß over α isoform and with EC50 of 30-50 nM in cell-based and direct binding assays.


Assuntos
Antineoplásicos/farmacologia , Cicloeptanos/farmacologia , Receptor beta de Estrogênio/agonistas , Estrogênios/farmacologia , Metanol/farmacocinética , Fenóis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Cristalografia por Raios X , Cicloeptanos/síntese química , Cicloeptanos/química , Cicloeptanos/farmacocinética , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Estrogênios/síntese química , Estrogênios/química , Humanos , Células MCF-7 , Metanol/síntese química , Metanol/química , Modelos Moleculares , Estrutura Molecular , Fenóis/síntese química , Fenóis/química , Relação Estrutura-Atividade
4.
J Med Chem ; 61(11): 4720-4738, 2018 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-29741891

RESUMO

Estrogen receptor-beta (ERß) is a drug target for memory consolidation in postmenopausal women. Herein is reported a series of potent and selective ERß agonists (SERBAs) with in vivo efficacy that are A-C estrogens, lacking the B and D estrogen rings. The most potent and selective A-C estrogen is selective for activating ER relative to seven other nuclear hormone receptors, with a surprising 750-fold selectivity for the ß over α isoform and with EC50s of 20-30 nM in cell-based and direct binding assays. Comparison of potency in different assays suggests that the ER isoform selectivity is related to the compound's ability to drive the productive conformational change needed to activate transcription. The compound also shows in vivo efficacy after microinfusion into the dorsal hippocampus and after intraperitoneal injection (0.5 mg/kg) or oral gavage (0.5 mg/kg). This simple yet novel A-C estrogen is selective, brain penetrant, and facilitates memory consolidation.


Assuntos
Receptor beta de Estrogênio/agonistas , Estrogênios/química , Estrogênios/farmacologia , Consolidação da Memória/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450/metabolismo , Relação Dose-Resposta a Droga , Receptor beta de Estrogênio/química , Receptor beta de Estrogênio/metabolismo , Estrogênios/metabolismo , Humanos , Células MCF-7 , Simulação de Acoplamento Molecular , Conformação Proteica , Relação Estrutura-Atividade
5.
Antibiotics (Basel) ; 6(1)2017 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-28134858

RESUMO

The thioredoxin/thioredoxin reductase system (Trx/TrxR) is an attractive drug target because of its involvement in a number of important physiological processes, from DNA synthesis to regulating signal transduction. This study describes the finding of pyrazolone compounds that are active against Staphylococcus aureus. Initially, the project was focused on discovering small molecules that may have antibacterial properties targeting the Mycobacterium tuberculosis thioredoxin reductase. This led to the discovery of a pyrazolone scaffold-containing compound series that showed bactericidal capability against S. aureus strains, including drug-resistant clinical isolates. The findings support continued development of the pyrazolone compounds as potential anti-S. aureus antibiotics.

6.
PLoS One ; 10(12): e0144638, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26658750

RESUMO

The hepatitis C virus (HCV) is a species of diverse genotypes that infect over 170 million people worldwide, causing chronic inflammation, cirrhosis and hepatocellular carcinoma. HCV genotype 3a is common in Brazil, and it is associated with a relatively poor response to current direct-acting antiviral therapies. The HCV NS3 protein cleaves part of the HCV polyprotein, and cellular antiviral proteins. It is therefore the target of several HCV drugs. In addition to its protease activity, NS3 is also an RNA helicase. Previously, HCV present in a relapse patient was found to harbor a mutation known to be lethal to HCV genotype 1b. The point mutation encodes the amino acid substitution W501R in the helicase RNA binding site. To examine how the W501R substitution affects NS3 helicase activity in a genotype 3a background, wild type and W501R genotype 3a NS3 alleles were sub-cloned, expressed in E. coli, and the recombinant proteins were purified and characterized. The impact of the W501R allele on genotype 2a and 3a subgenomic replicons was also analyzed. Assays monitoring helicase-catalyzed DNA and RNA unwinding revealed that the catalytic efficiency of wild type genotype 3a NS3 helicase was more than 600 times greater than the W501R protein. Other assays revealed that the W501R protein bound DNA less than 2 times weaker than wild type, and both proteins hydrolyzed ATP at similar rates. In Huh7.5 cells, both genotype 2a and 3a subgenomic HCV replicons harboring the W501R allele showed a severe defect in replication. Since the W501R allele is carried as a minor variant, its replication would therefore need to be attributed to the trans-complementation by other wild type quasispecies.


Assuntos
DNA Helicases/genética , Hepacivirus/genética , Hepatite C/patologia , Mutação de Sentido Incorreto , Proteínas não Estruturais Virais/genética , Antivirais/uso terapêutico , Sítios de Ligação/genética , Biocatálise , Linhagem Celular Tumoral , DNA/genética , DNA/metabolismo , DNA Helicases/metabolismo , Escherichia coli/genética , Genótipo , Hepacivirus/enzimologia , Hepacivirus/fisiologia , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interferon-alfa/uso terapêutico , Pessoa de Meia-Idade , RNA/genética , RNA/metabolismo , Proteínas Recombinantes/metabolismo , Recidiva , Ribavirina/uso terapêutico , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/genética
7.
ACS Infect Dis ; 1(3): 140-148, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-26029739

RESUMO

The flavivirus nonstructural protein 3 (NS3) is a protease and helicase, and on the basis of its similarity to its homologue encoded by the hepatitis C virus (HCV), the flavivirus NS3 might be a promising drug target. Few flavivirus helicase inhibitors have been reported, in part, because few specific inhibitors have been identified when nucleic acid unwinding assays have been used to screen for helicase inhibitors. To explore the possibility that compounds inhibiting NS3-catalyzed ATP hydrolysis might function as antivirals even if they do not inhibit RNA unwinding in vitro, we designed a robust dengue virus (DENV) NS3 ATPase assay suitable for high-throughput screening. Members of two classes of inhibitory compounds were further tested in DENV helicase-catalyzed RNA unwinding assays, assays monitoring HCV helicase action, subgenomic DENV replicon assays, and cell viability assays and for their ability to inhibit West Nile virus (Kunjin subtype) replication in cells. The first class contained analogues of NIH molecular probe ML283, a benzothiazole oligomer derived from the dye primuline, and they also inhibited HCV helicase and DENV NS3-catalyzed RNA unwinding. The most intriguing ML283 analogue inhibited DENV NS3 with an IC50 value of 500 nM and was active against the DENV replicon. The second class contained specific DENV ATPase inhibitors that did not inhibit DENV RNA unwinding or reactions catalyzed by HCV helicase. Members of this class contained a 4-hydroxy-3-(5-methylfuran-2-carbonyl)-2H-pyrrol-5-one scaffold, and about 20 µM of the most potent pyrrolone inhibited both DENV replicons and West Nile virus replication in cells by 50%.

8.
ACS Chem Biol ; 10(8): 1887-96, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-25961497

RESUMO

This study examines the specificity and mechanism of action of a recently reported hepatitis C virus (HCV) nonstructural protein 3 (NS3) helicase-protease inhibitor (HPI), and the interaction of HPI with the NS3 protease inhibitors telaprevir, boceprevir, danoprevir, and grazoprevir. HPI most effectively reduced cellular levels of subgenomic genotype 4a replicons, followed by genotypes 3a and 1b replicons. HPI had no effect on HCV genotype 2a or dengue virus replicon levels. Resistance evolved more slowly to HPI than telaprevir, and HPI inhibited telaprevir-resistant replicons. Molecular modeling and analysis of the ability of HPI to inhibit peptide hydrolysis catalyzed by a variety of wildtype and mutant NS3 proteins suggested that HPI forms a bridge between the NS3 RNA-binding cleft and an allosteric site previously shown to bind other protease inhibitors. In most combinations, the antiviral effect of HPI was additive with telaprevir and boceprevir, minor synergy was observed with danoprevir, and modest synergy was observed with grazoprevir.


Assuntos
Antivirais/farmacologia , Hepacivirus/efeitos dos fármacos , Inibidores de Proteases/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Hepacivirus/química , Hepacivirus/metabolismo , Hepatite C/tratamento farmacológico , Hepatite C/virologia , Humanos , Modelos Moleculares , Terapia de Alvo Molecular , Oligopeptídeos/farmacologia , Proteínas não Estruturais Virais/química , Proteínas não Estruturais Virais/metabolismo
9.
ACS Chem Biol ; 9(10): 2393-403, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25126694

RESUMO

The hepatitis C virus (HCV) nonstructural protein 3 (NS3) is both a protease, which cleaves viral and host proteins, and a helicase that separates nucleic acid strands, using ATP hydrolysis to fuel the reaction. Many antiviral drugs, and compounds in clinical trials, target the NS3 protease, but few helicase inhibitors that function as antivirals have been reported. This study focuses on the analysis of the mechanism by which ebselen (2-phenyl-1,2-benzisoselenazol-3-one), a compound previously shown to be a HCV antiviral agent, inhibits the NS3 helicase. Ebselen inhibited the abilities of NS3 to unwind nucleic acids, to bind nucleic acids, and to hydrolyze ATP, and about 1 µM ebselen was sufficient to inhibit each of these activities by 50%. However, ebselen had no effect on the activity of the NS3 protease, even at 100 times higher ebselen concentrations. At concentrations below 10 µM, the ability of ebselen to inhibit HCV helicase was reversible, but prolonged incubation of HCV helicase with higher ebselen concentrations led to irreversible inhibition and the formation of covalent adducts between ebselen and all 14 cysteines present in HCV helicase. Ebselen analogues with sulfur replacing the selenium were just as potent HCV helicase inhibitors as ebselen, but the length of the linker between the phenyl and benzisoselenazol rings was critical. Modifications of the phenyl ring also affected compound potency over 30-fold, and ebselen was a far more potent helicase inhibitor than other, structurally unrelated, thiol-modifying agents. Ebselen analogues were also more effective antiviral agents, and they were less toxic to hepatocytes than ebselen. Although the above structure-activity relationship studies suggest that ebselen targets a specific site on NS3, we were unable to confirm binding to either the NS3 ATP binding site or nucleic acid binding cleft by examining the effects of ebselen on NS3 proteins lacking key cysteines.


Assuntos
Antivirais/farmacologia , Azóis/farmacologia , Hepatite C/virologia , Ácidos Nucleicos/metabolismo , Compostos Organosselênicos/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos , Antioxidantes/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/virologia , Proliferação de Células , Ensaio de Desvio de Mobilidade Eletroforética , Hepacivirus/efeitos dos fármacos , Hepatite C/tratamento farmacológico , Hepatite C/metabolismo , Humanos , Hidrólise , Isoindóis , Cinética , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/virologia , Modelos Moleculares , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização por Electrospray , Relação Estrutura-Atividade , Células Tumorais Cultivadas
10.
Protein Sci ; 22(12): 1786-98, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24123290

RESUMO

Hepatitis C (HCV) protein 3/4A (NS3/4A) is a bifunctional enzyme comprising two separate domains with protease and helicase activities, which are essential for viral propagation. Both domains are stable and have enzymatic activity separately, and the relevance and implications of having protease and helicase together as a single protein remains to be explored. Altered in vitro activities of isolated domains compared with the full-length NS3/4A protein suggest the existence of interdomain communication. The molecular mechanism and extent of this communication was investigated by probing the domain-domain interface observed in HCV NS3/4A crystal structures. We found in molecular dynamics simulations that the two domains of NS3/4A are dynamically coupled through the interface. Interestingly, mutations designed to disrupt this interface did not hinder the catalytic activities of either domain. In contrast, substrate cleavage and DNA unwinding by these mutants were mostly enhanced compared with the wild-type protein. Disrupting the interface did not significantly alter RNA unwinding activity; however, the full-length protein was more efficient in RNA unwinding than the isolated protease domain, suggesting a more direct role in RNA processing independent of the interface. Our findings suggest that HCV NS3/4A adopts an "extended" catalytically active conformation, and interface formation acts as a switch to regulate activity. We propose a unifying model connecting HCV NS3/4A conformational states and protease and helicase function, where interface formation and the dynamic interplay between the two enzymatic domains of HCV NS3/4A potentially modulate the protease and helicase activities in vivo.


Assuntos
Proteínas de Transporte/química , DNA Helicases/metabolismo , Hepacivirus/enzimologia , Enzimas Multifuncionais/química , Peptídeo Hidrolases/metabolismo , RNA Helicases/metabolismo , Proteínas não Estruturais Virais/química , Substituição de Aminoácidos , Proteínas de Transporte/metabolismo , Hepacivirus/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Simulação de Dinâmica Molecular , Enzimas Multifuncionais/metabolismo , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas não Estruturais Virais/metabolismo
11.
Biochemistry ; 52(36): 6151-9, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-23947785

RESUMO

Aurintricarboxylic acid (ATA) is a potent inhibitor of many enzymes needed for cell and virus replication, such as polymerases, helicases, nucleases, and topoisomerases. This study examines how ATA interacts with the helicase encoded by the hepatitis C virus (HCV) and reveals that ATA interferes with both nucleic acid and ATP binding to the enzyme. We show that ATA directly binds HCV helicase to prevent the enzyme from interacting with nucleic acids and to modulate the affinity of HCV helicase for ATP, the fuel for helicase action. Amino acid substitutions in the helicase DNA binding cleft or its ATP binding site alter the ability of ATA to disrupt helicase-DNA interactions. These data, along with molecular modeling results, support the notion that an ATA polymer binds between Arg467 and Glu493 to prevent the helicase from binding either ATP or nucleic acids. We also characterize how ATA affects the kinetics of helicase-catalyzed ATP hydrolysis, and thermodynamic parameters describing the direct interaction between HCV helicase and ATA using microcalorimetry. The thermodynamics of ATA binding to HCV helicase reveal that ATA binding does not mimic nucleic acid binding in that ATA binding is driven by a smaller enthalpy change and an increase in entropy.


Assuntos
Trifosfato de Adenosina/metabolismo , Ácido Aurintricarboxílico/farmacologia , DNA/metabolismo , Proteínas não Estruturais Virais/efeitos dos fármacos , Substituição de Aminoácidos , Varredura Diferencial de Calorimetria , Hepacivirus/enzimologia , Modelos Moleculares , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo
12.
J Biomol Screen ; 18(7): 761-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23536547

RESUMO

Helicases are ubiquitous motor proteins that separate and/or rearrange nucleic acid duplexes in reactions fueled by adenosine triphosphate (ATP) hydrolysis. Helicases encoded by bacteria, viruses, and human cells are widely studied targets for new antiviral, antibiotic, and anticancer drugs. This review summarizes the biochemistry of frequently targeted helicases. These proteins include viral enzymes from herpes simplex virus, papillomaviruses, polyomaviruses, coronaviruses, the hepatitis C virus, and various flaviviruses. Bacterial targets examined include DnaB-like and RecBCD-like helicases. The human DEAD-box protein DDX3 is the cellular antiviral target discussed, and cellular anticancer drug targets discussed are the human RecQ-like helicases and eIF4A. We also review assays used for helicase inhibitor discovery and the most promising and common helicase inhibitor chemotypes, such as nucleotide analogues, polyphenyls, metal ion chelators, flavones, polycyclic aromatic polymers, coumarins, and various DNA binding pharmacophores. Also discussed are common complications encountered while searching for potent helicase inhibitors and possible solutions for these problems.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , DNA Helicases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Proteínas Virais/antagonistas & inibidores , Animais , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Antivirais/farmacologia , Proteínas de Bactérias/fisiologia , DNA Helicases/fisiologia , Replicação do DNA , Ensaios de Triagem em Larga Escala , Humanos , Ligação Proteica , Biossíntese de Proteínas , Proteínas Virais/fisiologia
13.
Antiviral Res ; 96(2): 245-55, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22940425

RESUMO

The hepatitis C virus (HCV) multifunctional nonstructural protein 3 (NS3) is a protease that cleaves viral and host proteins and a helicase that separates DNA and RNA structures in reactions fueled by ATP hydrolysis. Li et al. (2012) recently synthesized a series of new NS3 helicase inhibitors from the benzothiazole dimer component of the fluorescent yellow dye primuline. This study further characterizes a subset of these primuline derivatives with respect to their specificity, mechanism of action, and effect on cells harboring HCV subgenomic replicons. All compounds inhibited DNA and RNA unwinding catalyzed by NS3 from different HCV genotypes, but only some inhibited the NS3 protease function, and few had any effect on HCV NS3 catalyzed ATP hydrolysis. A different subset contained potent inhibitors of RNA stimulated ATP hydrolysis catalyzed by the related NS3 protein from Dengue virus. In assays monitoring intrinsic protein fluorescence in the absence of nucleic acids, the compounds cooperatively bound NS3 with K(d)s that reflect their potency in assays. The fluorescent properties of the primuline derivatives both in vitro and in cells are also described. The primuline derivative that was the most active against subgenomic replicons in cells caused a 14-fold drop in HCV RNA levels (IC(50)=5±2µM). In cells, the most effective primuline derivative did not inhibit the cellular activity of NS3 protease but disrupted HCV replicase structures.


Assuntos
Antivirais/farmacologia , DNA Helicases/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Serina Endopeptidases/metabolismo , Tiazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Linhagem Celular , Fluorescência , Hepacivirus/efeitos dos fármacos , Humanos , Concentração Inibidora 50 , Testes de Sensibilidade Microbiana , Ligação Proteica , Tiazóis/química
14.
Methods Enzymol ; 511: 463-83, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22713333

RESUMO

This chapter describes two types of FRET-based fluorescence assays that can be used to identify and analyze compounds that inhibit the helicase encoded by the hepatitis C virus (HCV). Both assays use a fluorescently labeled DNA or RNA oligonucleotide to monitor helicase-catalyzed strand separation, and they differ from other real-time helicase assays in that they do not require the presence of other nucleic acids to trap the reaction products. The first assay is a molecular beacon-based helicase assay (MBHA) that monitors helicase-catalyzed displacement of a hairpin-forming oligonucleotide with a fluorescent moiety on one end and a quencher on the other. DNA-based MBHAs have been used extensively for high-throughput screening (HTS), but RNA-based MBHAs are typically less useful because of poor signal to background ratios. In the second assay discussed, the fluorophore and quencher are split between two hairpin-forming oligonucleotides annealed in tandem to a third oligonucleotide. This split beacon helicase assay can be used for HTS with either DNA or RNA oligonucleotides. These assays should be useful to the many labs searching for HCV helicase inhibitors in order to develop new HCV therapies that are still desperately needed.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/enzimologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Proteínas não Estruturais Virais/metabolismo , Adenosina Trifosfatases/metabolismo , Transferência Ressonante de Energia de Fluorescência
15.
Nucleic Acids Res ; 40(17): 8607-21, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22740655

RESUMO

Typical assays used to discover and analyze small molecules that inhibit the hepatitis C virus (HCV) NS3 helicase yield few hits and are often confounded by compound interference. Oligonucleotide binding assays are examined here as an alternative. After comparing fluorescence polarization (FP), homogeneous time-resolved fluorescence (HTRF®; Cisbio) and AlphaScreen® (Perkin Elmer) assays, an FP-based assay was chosen to screen Sigma's Library of Pharmacologically Active Compounds (LOPAC) for compounds that inhibit NS3-DNA complex formation. Four LOPAC compounds inhibited the FP-based assay: aurintricarboxylic acid (ATA) (IC50=1.4 µM), suramin sodium salt (IC50=3.6 µM), NF 023 hydrate (IC50=6.2 µM) and tyrphostin AG 538 (IC50=3.6 µM). All but AG 538 inhibited helicase-catalyzed strand separation, and all but NF 023 inhibited replication of subgenomic HCV replicons. A counterscreen using Escherichia coli single-stranded DNA binding protein (SSB) revealed that none of the new HCV helicase inhibitors were specific for NS3h. However, when the SSB-based assay was used to analyze derivatives of another non-specific helicase inhibitor, the main component of the dye primuline, it revealed that some primuline derivatives (e.g. PubChem CID50930730) are up to 30-fold more specific for HCV NS3h than similarly potent HCV helicase inhibitors.


Assuntos
Inibidores Enzimáticos/farmacologia , Hepacivirus/enzimologia , Ensaios de Triagem em Larga Escala , RNA Helicases/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ensaios Enzimáticos , Proteínas de Escherichia coli/metabolismo , Polarização de Fluorescência , RNA Helicases/metabolismo , Bibliotecas de Moléculas Pequenas , Proteínas não Estruturais Virais/metabolismo
16.
J Antimicrob Chemother ; 67(8): 1884-94, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22535622

RESUMO

OBJECTIVES: Infection with yellow fever virus (YFV), the prototypic mosquito-borne flavivirus, causes severe febrile disease with haemorrhage, multi-organ failure and a high mortality. Moreover, in recent years the Flavivirus genus has gained further attention due to re-emergence and increasing incidence of West Nile, dengue and Japanese encephalitis viruses. Potent and safe antivirals are urgently needed. METHODS: Starting from the crystal structure of the NS3 helicase from Kunjin virus (an Australian variant of West Nile virus), we identified a novel, unexploited protein site that might be involved in the helicase catalytic cycle and could thus in principle be targeted for enzyme inhibition. In silico docking of a library of small molecules allowed us to identify a few selected compounds with high predicted affinity for the new site. Their activity against helicases from several flaviviruses was confirmed in in vitro helicase/enzymatic assays. The effect on the in vitro replication of flaviviruses was then evaluated. RESULTS: Ivermectin, a broadly used anti-helminthic drug, proved to be a highly potent inhibitor of YFV replication (EC50 values in the sub-nanomolar range). Moreover, ivermectin inhibited, although less efficiently, the replication of several other flaviviruses, i.e. dengue fever, Japanese encephalitis and tick-borne encephalitis viruses. Ivermectin exerts its effect at a timepoint that coincides with the onset of intracellular viral RNA synthesis, as expected for a molecule that specifically targets the viral helicase. CONCLUSIONS: The well-tolerated drug ivermectin may hold great potential for treatment of YFV infections. Furthermore, structure-based optimization may result in analogues exerting potent activity against flaviviruses other than YFV.


Assuntos
Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Ivermectina/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Vírus da Febre Amarela/efeitos dos fármacos , Animais , Chlorocebus aethiops , Vírus da Dengue/efeitos dos fármacos , Vírus da Encefalite Japonesa (Subgrupo)/efeitos dos fármacos , Vírus da Encefalite Transmitidos por Carrapatos/efeitos dos fármacos , Simulação de Dinâmica Molecular , RNA Helicases/antagonistas & inibidores , RNA Helicases/química , Serina Endopeptidases/química , Células Vero , Proteínas não Estruturais Virais/química , Replicação Viral/efeitos dos fármacos
17.
J Med Chem ; 55(7): 3319-30, 2012 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-22409723

RESUMO

A screen for hepatitis C virus (HCV) NS3 helicase inhibitors revealed that the commercial dye thioflavine S was the most potent inhibitor of NS3-catalyzed DNA and RNA unwinding in the 827-compound National Cancer Institute Mechanistic Set. Thioflavine S and the related dye primuline were separated here into their pure components, all of which were oligomers of substituted benzothiazoles. The most potent compound (P4), a benzothiazole tetramer, inhibited unwinding >50% at 2 ± 1 µM, inhibited the subgenomic HCV replicon at 10 µM, and was not toxic at 100 µM. Because P4 also interacted with DNA, more specific analogues were synthesized from the abundant dimeric component of primuline. Some of the 32 analogues prepared retained ability to inhibit HCV helicase but did not appear to interact with DNA. The most potent of these specific helicase inhibitors (compound 17) was active against the replicon and inhibited the helicase more than 50% at 2.6 ± 1 µM.


Assuntos
Antivirais/farmacologia , Hepacivirus/enzimologia , RNA Helicases/antagonistas & inibidores , Tiazóis/farmacologia , Proteínas não Estruturais Virais/antagonistas & inibidores , Animais , Antivirais/química , Antivirais/isolamento & purificação , Benzotiazóis , Proteínas Sanguíneas/metabolismo , Linhagem Celular Tumoral , Corantes/química , Corantes/farmacologia , Hepacivirus/efeitos dos fármacos , Hepacivirus/genética , Humanos , Camundongos , Polímeros , Ligação Proteica , RNA Viral/metabolismo , Replicon , Solubilidade , Relação Estrutura-Atividade , Tiazóis/química , Replicação Viral/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...