Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Waste Manag ; 186: 318-330, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38954923

RESUMO

Climate impacts of landfill gas emissions were investigated for 20- and 100-year time horizons to identify the effects of atmospheric lifetimes of short- and long-lived drivers. Direct and indirect climate impacts were determined for methane and 79 trace species. The impacts were quantified using global warming potential, GWP (direct and indirect); atmospheric degradation (direct); tropospheric ozone forming potential (indirect); secondary aerosol forming potential (indirect) and stratospheric ozone depleting potential (indirect). Effects of cover characteristics, landfill operational conditions, and season on emissions were assessed. Analysis was conducted at five operating municipal solid waste landfills in California, which collectively contained 13% of the waste in place in the state. Climate impacts were determined to be primarily due to direct emissions (99.5 to 115%) with indirect emissions contributing -15 to 0.5%. Methane emissions were 35 to 99% of the total emissions and the remainder mainly greenhouse gases (hydro)chlorofluorocarbons (up to 42% of total emissions) and nitrous oxide. Cover types affected emissions, where the highest emissions were generally from intermediate covers with the largest relative landfill surface areas. Landfill-specific direct emissions varied between 683 and 103,411 and between 381 and 37,925 Mg CO2-eq./yr for 20- and 100-yr time horizons, respectively. Total emissions (direct + indirect) were 680 to 103,600 (20-yr) and were 374 to 38,108 (100-yr) Mg CO2-eq./yr. Analysis time horizon significantly affected emissions. The 20-yr direct and total emissions were consistently higher than the 100-yr emissions by up to 2.5 times. Detailed analysis of time-dependent climate effects can inform strategies to mitigate climate change impacts of landfill gas emissions.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Metano , Instalações de Eliminação de Resíduos , Poluentes Atmosféricos/análise , Metano/análise , California , Eliminação de Resíduos/métodos , Clima , Gases de Efeito Estufa/análise , Mudança Climática , Fatores de Tempo , Resíduos Sólidos/análise
2.
Waste Manag ; 169: 392-398, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37544208

RESUMO

A first foundational assessment is provided for disaster debris reconnaissance that includes identifying tools and techniques for reconnaissance activities, identifying challenges in field reconnaissance, and identifying and developing preliminary guidelines and standards based on advancements from a workshop held in 2022. In this workshop, reconnaissance activities were analyzed in twofold: in relation to post-disaster debris and waste materials and in relation to waste management infrastructure. A four-phase timeline was included to capture the full lifecycle of management activities ranging from collection to temporary storage to final management route: pre-disaster or pre-reconnaissance, post-disaster response (days/weeks), short-term recovery (weeks/months), and long-term recovery (months/years). For successful reconnaissance, objectives of field activities and data collection needs; data types and metrics; and measurement and determination methods need to be identified. A reconnaissance framework, represented using a 3x2x2x4 matrix, is proposed to incorporate data attributes (tools, challenges, guides), reconnaissance attributes (debris, infrastructure; factors, actions), and time attributes (pre-event, response, short-term, long-term). This framework supports field reconnaissance missions and protocols that are longitudinally based and focused on post-disaster waste material and infrastructure metrics that advance sustainable materials management practices. To properly frame and develop effective reconnaissance activities, actions for all data attributes (tools, challenges, guides) are proposed to integrate sustainability and resilience considerations. While existing metrics, tools, methods, standards, and protocols can be adapted for sustainable post-disaster materials management reconnaissance, development of new approaches are needed for addressing unique aspects of disaster debris management.


Assuntos
Planejamento em Desastres , Desastres
3.
MethodsX ; 10: 102048, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36824994

RESUMO

Fugitive methane emissions from municipal solid waste landfills impact global climate change and reliable emissions quantification is of increasing importance. Ground-based cavity ring-down spectrometer (CRDS) measurements were used to determine methane concentrations and isotopic compositions of carbon in CH4. Then, CH4 oxidation through various cover materials was assessed using the Keeling plot method. A novel inverse modeling approach using Gaussian dispersion analysis, termed near-surface Gaussian plume estimation (NSGPE), was developed to predict whole-site landfill methane emissions. The concentration data obtained around the landfill perimeter with the mobile ground-based CRDS were used. Methane concentration data were integrated to parameterize discretized point source emissions from a Gaussian dispersion model. Post-processing algorithms were applied to refine modeling predictions to account for the influence of topographical and meteorological conditions on methane transport. Results indicate spatially resolved and consistent emissions estimates among multiple optimization simulations, with refinements increasing the resolution and spatial trends of emissions. Post-processing algorithms resolve consistent overestimation of emissions commonly observed using conventional Gaussian dispersion models.•Ground-based CRDS used to obtain methane concentration and oxidation data.•Novel inverse Gaussian dispersion modeling approach developed to predict methane emissions from landfills accounting for site-specific topography and meteorology.•Post-processing algorithms refine emissions estimates.

4.
Waste Manag ; 154: 146-159, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36242816

RESUMO

Methane flux and emissions were obtained at a California landfill concurrently using field measurements, inventory analyses, and modeling. Measured fluxes ranged from -3.7 to 828 g/m2-day and generally decreased from daily to intermediate to final covers. Soil covers with high-plasticity clay had the lowest fluxes. Whole-site emissions ranged from 406 to 47,414 tonnes/year (11,368 to 1,327,592 tonnes CO2-eq./year), and were dominated by intermediate covers with high relative surface area. Emissions estimates from flux chamber tests and California Landfill Methane Inventory Model (CALMIM) with oxidation were similar and low, whereas emissions from aerial measurements and CALMIM without oxidation were similar and high. The inventory analyses provided intermediate emissions and a new Gaussian plume model based on ground cavity ring-down spectrometer measurements provided the highest emissions. The assumptions used and the inherent strengths and limitations of the different approaches resulted in the flux and emissions differences. With varied attributes (experimental/modeling; flux/emissions; whole-site/cover-specific, top-down/bottom-up), the approaches provide envelopes of methane emissions and can be used selectively for the two main purposes of landfill methane emissions analysis: to mechanistically determine the factors that control/limit surface emissions and to provide data for atmospheric methane analysis. To reduce emissions, progression from temporary to permanent cover areas can be accelerated and covers with coarser materials can be amended with plastic fines.

5.
Environ Sci Technol ; 54(15): 9254-9264, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633497

RESUMO

This study derives methane emission rates from 92 airborne observations collected over 23 facilities including 5 refineries, 10 landfills, 4 wastewater treatment plants (POTWs), 2 composting operations, and 2 dairies in the San Francisco Bay Area. Emission rates are measured using an airborne mass-balance technique from a low-flying aircraft. Annual measurement-based sectorwide methane emissions are 19,000 ± 2300 Mg for refineries, 136,700 ± 25,900 Mg for landfills, 11,900 ± 1,500 Mg for POTWs, and 11,100 ± 3,400 Mg for composting. The average of measured emissions for each refinery ranges from 4 to 23 times larger than the corresponding emissions reported to regulatory agencies, while measurement-derived landfill and POTW estimates are approximately twice the current inventory estimates. Significant methane emissions at composting facilities indicate that a California mandate to divert organics from landfills to composting may not be an effective measure for mitigating methane emissions unless best management practices are instituted at composting facilities. Complementary evidence from airborne remote sensing imagery indicates atmospheric venting from refinery hydrogen plants, landfill working surfaces, composting stockpiles, etc., to be among the specific source types responsible for the observed discrepancies. This work highlights the value of multiple measurement approaches to accurately estimate facility-scale methane emissions and perform source attribution at subfacility scales to guide and verify effective mitigation policy and action.


Assuntos
Poluentes Atmosféricos , Metano , Poluentes Atmosféricos/análise , Monitoramento Ambiental , Metano/análise , São Francisco , Instalações de Eliminação de Resíduos
6.
Environ Sci Technol ; 52(12): 6789-6797, 2018 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-29792701

RESUMO

Emissions of twelve (hydro)chlorofluorocarbons (F-gases) and methane were quantified using large-scale static chambers as a function of cover type (daily, intermediate, final) and seasonal variation (wet, dry) at a California landfill. The majority of the F-gas fluxes was positive and varied over 7 orders of magnitude across the cover types in a given season (wet: 10-8 to 10-1 g/m2-day; dry: 10-9 to 10-2 g/m2-day). The highest fluxes were from active filling areas with thin, coarse-grained daily covers, whereas the lowest fluxes were from the thick, fine-grained final cover. Historical F-gas replacement trends, waste age, and cover soil geotechnical properties affected flux with significantly lower F-gas fluxes than methane flux (10-4 to 10+1 g/m2-day). Both flux and variability of flux decreased with the order: daily to intermediate to final covers; coarser to finer cover materials; low to high fines content cover soils; high to low degree of saturation cover soils; and thin to thick covers. Cover-specific F-gas fluxes were approximately one order of magnitude higher in the wet than dry season, due to combined effects of comparatively high saturations, high void ratios, and low temperatures. Emissions were primarily controlled by type and relative areal extent of cover materials and secondarily by season.


Assuntos
Poluentes Atmosféricos , Eliminação de Resíduos , California , Gases , Metano , Oxirredução , Solo , Instalações de Eliminação de Resíduos
7.
Waste Manag ; 56: 246-54, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27462028

RESUMO

Heat is a primary byproduct of landfilling of municipal solid waste. Long-term elevated temperatures have been reported for MSW landfills under different operational conditions and climatic regions around the world. A conceptual framework is presented for management of the heat generated in MSW landfills. Three main strategies are outlined: extraction, regulation, and supplementation. Heat extraction allows for beneficial use of the excess landfill heat as an alternative energy source. Two approaches are provided for the extraction strategy: extracting all of the excess heat above baseline equilibrium conditions in a landfill and extracting only a part of the excess heat above equilibrium conditions to obtain target optimum waste temperatures for maximum gas generation. Heat regulation allows for controlling the waste temperatures to achieve uniform distribution at target levels at a landfill facility. Two approaches are provided for the regulation strategy: redistributing the excess heat across a landfill to obtain uniform target optimum waste temperatures for maximum gas generation and redistributing the excess heat across a landfill to obtain specific target temperatures. Heat supplementation allows for controlling heat generation using external thermal energy sources to achieve target waste temperatures. Two approaches are provided for the supplementation strategy: adding heat to the waste mass using an external energy source to increase waste temperatures and cooling the waste mass using an external energy source to decrease waste temperatures. For all strategies, available landfill heat energy is determined based on the difference between the waste temperatures and the target temperatures. Example analyses using data from landfill facilities with relatively low and high heat generation indicated thermal energy in the range of -48.4 to 72.4MJ/m(3) available for heat management. Further modeling and experimental analyses are needed to verify the effectiveness and feasibility of design, installation, and operation of heat management systems in MSW landfills.


Assuntos
Temperatura Alta , Resíduos Sólidos/análise , Gerenciamento de Resíduos/métodos , Instalações de Eliminação de Resíduos
8.
Waste Manag ; 46: 338-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26350400

RESUMO

This investigation was conducted to evaluate the influence of waste placement practices on the engineering response of municipal solid waste (MSW) landfills. Waste placement conditions were varied by moisture addition to the wastes at the time of disposal. Tests were conducted at a California landfill in test plots (residential component of incoming wastes) and full-scale active face (all incoming wastes including residential, commercial, and self-delivered components). The short-term effects of moisture addition were assessed by investigating compaction characteristics and moisture distribution and the long-term effects by estimating settlement characteristics of the variably placed wastes. In addition, effects on engineering properties including hydraulic conductivity and shear strength, as well as economic aspects were investigated. The unit weight of the wastes increased with moisture addition to a maximum value and then decreased with further moisture addition. At the optimum moisture conditions, 68% more waste could be placed in the same landfill volume compared to the baseline conditions. Moisture addition raised the volumetric moisture content of the wastes to the range 33-42%, consistent with values at and above field capacity. Moisture transfer occurred between consecutive layers of compacted wastes and a moisture addition schedule of 2 days of as-received conditions and 1 day of moisture addition was recommended. Settlement of wastes was estimated to increase with moisture addition, with a 34% increase at optimum moisture compared to as-received conditions. Overall, moisture addition during compaction increased unit weight, the amount of incoming wastes disposed in a given landfill volume, biological activity potential, and predicted settlement. The combined effects have significant environmental and economic implications for landfill operations.


Assuntos
Eliminação de Resíduos/métodos , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , California , Eliminação de Resíduos/economia , Resistência ao Cisalhamento , Resíduos Sólidos/economia , Instalações de Eliminação de Resíduos/economia
9.
Waste Manag ; 42: 166-79, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25962825

RESUMO

A comprehensive review of heat generation in various types of wastes and of the thermal regime of waste containment facilities is provided in this paper. Municipal solid waste (MSW), MSW incineration ash, and mining wastes were included in the analysis. Spatial and temporal variations of waste temperatures, thermal gradients, thermal properties of wastes, average temperature differentials, and heat generation values are provided. Heat generation was influenced by climatic conditions, mean annual earth temperatures, waste temperatures at the time of placement, cover conditions, and inherent heat generation potential of the specific wastes. Time to onset of heat generation varied between months and years, whereas timelines for overall duration of heat generation varied between years and decades. For MSW, measured waste temperatures were as high as 60-90°C and as low as -6°C. MSW incinerator ash temperatures varied between 5 and 87°C. Mining waste temperatures were in the range of -25 to 65°C. In the wastes analyzed, upward heat flow toward the surface was more prominent than downward heat flow toward the subsurface. Thermal gradients generally were higher for MSW and incinerator ash and lower for mining waste. Based on thermal properties, MSW had insulative qualities (low thermal conductivity), while mining wastes typically were relatively conductive (high thermal conductivity) with ash having intermediate qualities. Heat generation values ranged from -8.6 to 83.1MJ/m(3) and from 0.6 to 72.6MJ/m(3) for MSW and mining waste, respectively and was 72.6MJ/m(3) for ash waste. Conductive thermal losses were determined to range from 13 to 1111MJ/m(3)yr. The data and analysis provided in this review paper can be used in the investigation of heat generation and thermal regime of a wide range of wastes and waste containment facilities located in different climatic regions.


Assuntos
Cinza de Carvão/análise , Incineração , Resíduos Sólidos/análise
10.
Waste Manag ; 34(5): 848-58, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24613593

RESUMO

This investigation was conducted to evaluate experimental determination of specific gravity (Gs) of municipal solid waste (MSW). Water pycnometry, typically used for testing soils was adapted for testing MSW using a large flask with 2000 mL capacity and specimens with 100-350 g masses. Tests were conducted on manufactured waste samples prepared using US waste constituent components; fresh wastes obtained prior and subsequent to compaction at an MSW landfill; and wastes obtained from various depths at the same landfill. Factors that influence specific gravity were investigated including waste particle size, compaction, and combined decomposition and stress history. The measured average specific gravities were 1.377 and 1.530 for as-prepared/uncompacted and compacted manufactured wastes, respectively; 1.072 and 1.258 for uncompacted and compacted fresh wastes, respectively; and 2.201 for old wastes. The average organic content and degree of decomposition were 77.2% and 0%, respectively for fresh wastes and 22.8% and 88.3%, respectively for old wastes. The Gs increased with decreasing particle size, compaction, and increasing waste age. For fresh wastes, reductions in particle size and compaction caused occluded intraparticle pores to be exposed and waste particles to be deformed resulting in increases in specific gravity. For old wastes, the high Gs resulted from loss of biodegradable components that have low Gs as well as potential access to previously occluded pores and deformation of particles due to both degradation processes and applied mechanical stresses. The Gs was correlated to the degree of decomposition with a linear relationship. Unlike soils, the Gs for MSW was not unique, but varied in a landfill environment due both to physical/mechanical processes and biochemical processes. Specific gravity testing is recommended to be conducted not only using representative waste composition, but also using representative compaction, stress, and degradation states.


Assuntos
Resíduos Sólidos/análise , Monitoramento Ambiental , Gravidade Específica
11.
Waste Manag ; 33(10): 1993-2000, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23664656

RESUMO

A numerical modeling approach has been developed for predicting temperatures in municipal solid waste landfills. Model formulation and details of boundary conditions are described. Model performance was evaluated using field data from a landfill in Michigan, USA. The numerical approach was based on finite element analysis incorporating transient conductive heat transfer. Heat generation functions representing decomposition of wastes were empirically developed and incorporated to the formulation. Thermal properties of materials were determined using experimental testing, field observations, and data reported in literature. The boundary conditions consisted of seasonal temperature cycles at the ground surface and constant temperatures at the far-field boundary. Heat generation functions were developed sequentially using varying degrees of conceptual complexity in modeling. First a step-function was developed to represent initial (aerobic) and residual (anaerobic) conditions. Second, an exponential growth-decay function was established. Third, the function was scaled for temperature dependency. Finally, an energy-expended function was developed to simulate heat generation with waste age as a function of temperature. Results are presented and compared to field data for the temperature-dependent growth-decay functions. The formulations developed can be used for prediction of temperatures within various components of landfill systems (liner, waste mass, cover, and surrounding subgrade), determination of frost depths, and determination of heat gain due to decomposition of wastes.


Assuntos
Modelos Teóricos , Eliminação de Resíduos/métodos , Instalações de Eliminação de Resíduos , Análise de Elementos Finitos , Temperatura Alta , Michigan , Dinâmica não Linear , Reprodutibilidade dos Testes , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA