Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eng Life Sci ; 23(2): e2200020, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36751475

RESUMO

We present a transient large eddy simulation (LES) modeling approach for simulating the interlinked physics describing free surface hydrodynamics, multiphase mixing, reaction kinetics, and mass transport in bioreactor systems. Presented case-studies include non-reacting and reacting bioreactor systems, modeled through the inclusion of uniform reaction rates and more complex biochemical reactions described using Contois type kinetics. It is shown that the presence of reactions can result in a non-uniform spatially varying species concentration field, the magnitude and extent of which is directly related to the reaction rates and the underlying variations in the local volumetric mass transfer coefficient.

2.
J Ind Microbiol Biotechnol ; 47(11): 929-946, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32894378

RESUMO

Different methods are used at Corteva® Agriscience to improve our understanding of mixing in large-scale mechanically agitated fermentors. These include (a) use of classical empirical correlations, (b) use of small-scale models, and (c) computational fluid dynamics (CFD). Each of these approaches has its own inherent strengths and limitations. Classic empirical or semi-empirical correlations can provide insights into mass transfer, blending, shear, and other important factors but are dependent on the geometry and condition used to develop the correlations. Laboratory-scale modelling can be very useful to study mixing and model the effect of heterogeneity on the culture, but success is highly dependent on the methodology applied. CFD provides an effective means to accelerate the exploration of alternative design strategies through physics-based computer simulations that may not be adequately described by existing knowledge or correlations. However, considerable time and effort is needed to build and validate these models. In this paper, we review the various approaches used at Corteva Agriscience to deepen our understanding of mixing in large-scale fermentation processes.


Assuntos
Reatores Biológicos , Fermentação , Simulação por Computador , Hidrodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...