Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 12: 834850, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35252038

RESUMO

During co-evolution Plasmodium parasites and vertebrates went through a process of selection resulting in defined and preferred parasite-host combinations. As such, Plasmodium falciparum (Pf) sporozoites can infect human hepatocytes while seemingly incompatible with host cellular machinery of other species. The compatibility between parasite invasion ligands and their respective human hepatocyte receptors plays a key role in Pf host selectivity. However, it is unclear whether the ability of Pf sporozoites to mature in cross-species infection also plays a role in host tropism. Here we used fresh hepatocytes isolated from porcine livers to study permissiveness to Pf sporozoite invasion and development. We monitored intra-hepatic development via immunofluorescence using anti-HSP70, MSP1, EXP1, and EXP2 antibodies. Our data shows that Pf sporozoites can invade non-human hepatocytes and undergo partial maturation with a significant decrease in schizont numbers between day three and day five. A possible explanation is that Pf sporozoites fail to form a parasitophorous vacuolar membrane (PVM) during invasion. Indeed, the observed aberrant EXP1 and EXP2 staining supports the presence of an atypical PVM. Functions of the PVM include the transport of nutrients, export of waste, and offering a protective barrier against intracellular host effectors. Therefore, an atypical PVM likely results in deficiencies that may detrimentally impact parasite development at multiple levels. In summary, despite successful invasion of porcine hepatocytes, Pf development arrests at mid-stage, possibly due to an inability to mobilize critical nutrients across the PVM. These findings underscore the potential of a porcine liver model for understanding the importance of host factors required for Pf mid-liver stage development.


Assuntos
Plasmodium falciparum , Plasmodium , Animais , Hepatócitos/parasitologia , Fígado/parasitologia , Proteínas de Protozoários , Esquizontes , Esporozoítos , Suínos
2.
J Cataract Refract Surg ; 40(9): 1521-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25135545

RESUMO

PURPOSE: To test 2 strategies to prevent capsule opacification after accommodating lens refilling in a rhesus monkey model. SETTING: Animal laboratory and laboratory of European university medical centers. DESIGN: Experimental study. METHODS: Six rhesus monkeys had refilling of the lens capsular bag. In the first strategy, before it was filled with a silicone polymer, the capsular bag was treated with noncommercial sodium hyaluronate 1.0% containing cytotoxic substances. In the second strategy, the capsular bag was filled with clinically used sodium hyaluronate 1.0% (Healon) after treatment with actinomycin-D. Slitlamp inspection was performed during a follow-up of 40 to 50 weeks. After enucleation, magnetic resonance images were obtained and confocal fluorescence imaging was performed. RESULTS: Using the first strategy, capsule opacification developed in all eyes. Using the second strategy, 1 monkey did not develop capsule opacification after a 9-month follow-up. In a second monkey, the lens capsule remained clear for 3 months, after which the hyaluronate refill material was exchanged with a silicone polymer and capsule opacification developed. Combining these results with those in a previous study, the difference in opacification between silicone and sodium hyaluronate as refilling materials was statistically significant (P<.01). CONCLUSIONS: That no capsular bag fibrosis occurred in the presence of hyaluronate suggests that the properties of hyaluronate are the reason that remaining lens epithelial cells do not develop into fibrotic cells. The choice of a suitable lens-refilling material prevents the development of capsule opacification. FINANCIAL DISCLOSURE: Mr. Terwee was an employee of Abbott Medical Optics B.V. during the study period. No other author has a financial or proprietary interest in any material or method mentioned.


Assuntos
Opacificação da Cápsula/prevenção & controle , Dactinomicina/farmacologia , Ácido Hialurônico/farmacologia , Cápsula do Cristalino/efeitos dos fármacos , Inibidores da Síntese de Ácido Nucleico/farmacologia , Elastômeros de Silicone/administração & dosagem , Viscossuplementos/farmacologia , Acomodação Ocular , Animais , Modelos Animais de Doenças , Combinação de Medicamentos , Feminino , Macaca mulatta , Imageamento por Ressonância Magnética , Masculino , Projetos Piloto
3.
Fetal Diagn Ther ; 24(1): 7-14, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18504374

RESUMO

OBJECTIVES: To evaluate histological changes in an animal model for bladder exstrophy and fetal repair of the bladder defect with a molecular-defined dual-layer collagen biomatrix to induce fetal bladder wall regeneration. METHODS: In 12 fetal lambs the abdominal wall and bladder were opened by a midline incision at 79 days' gestation. In 6 of these lambs an uncorrected bladder exstrophy was created by suturing the edges of the opened bladder to the abdominal wall (group 1). The other 6 lambs served as a repair group, where a dual-layer collagen biomatrix was sutured into the bladder wall and the abdominal wall was closed (group 2). A caesarean section was performed at 140 days' gestation, followed by macroscopic and histological examination. RESULTS: Group 1 showed inflammatory and maturational changes in the mucosa, submucosa and detrusor muscle of all the bladders. In group 2, bladder regeneration was observed, with urothelial coverage, ingrowth of fibroblasts and smooth muscle cells, deposition of collagen, neovascularization and nerve fibre formation. This tissue replaced the collagen biomatrix. No structural changes of the bladder were seen in group 2. CONCLUSIONS: The animal model, as in group 1, for bladder exstrophy shows remarkable histological resemblance with the naturally occurring anomaly in humans. This model can be used to develop new methods to salvage or regenerate bladder tissue in bladder exstrophy patients. Fetal bladder wall regeneration with a collagen biomatrix is feasible in this model, resulting in renewed formation of urothelium, blood vessels, nerve fibres, ingrowth of smooth muscle cells and salvage of the native bladder.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Extrofia Vesical/cirurgia , Colágeno/uso terapêutico , Doenças Fetais/cirurgia , Feto/cirurgia , Regeneração Tecidual Guiada , Animais , Extrofia Vesical/embriologia , Extrofia Vesical/patologia , Modelos Animais de Doenças , Doenças Fetais/patologia , Feto/patologia , Ovinos/embriologia , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA