Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26745, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38439844

RESUMO

There is a growing interest for the possibility of using peripheral blood cells (including platelets) as markers for mitochondrial function in less accessible tissues. Only a few studies have examined the correlation between respiration in blood and muscle tissue, with small sample sizes and conflicting results. This study investigated the correlation of mitochondrial respiration within and across tissues. Additional analyses were performed to elucidate which blood cell type would be most useful for assessing systemic mitochondrial function. There was a significant but weak within tissue correlation between platelets and peripheral blood mononuclear cells (PBMCs). Neither PBMCs nor platelet respiration correlated significantly with muscle respiration. Muscle fibers from a group of athletes had higher mass-specific respiration, due to higher mitochondrial content than non-athlete controls, but this finding was not replicated in either of the blood cell types. In a group of patients with primary mitochondrial diseases, there were significant differences in blood cell respiration compared to healthy controls, particularly in platelets. Platelet respiration generally correlated better with the citrate synthase activity of each sample, in comparison to PBMCs. In conclusion, this study does not support the theory that blood cells can be used as accurate biomarkers to detect minor alterations in muscle respiration. However, in some instances, pronounced mitochondrial abnormalities might be reflected across tissues and detectable in blood cells, with more promising findings for platelets than PBMCs.

2.
Neurotherapeutics ; 20(6): 1482-1495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37561274

RESUMO

Drug development in traumatic brain injury (TBI) has been impeded by the complexity and heterogeneity of the disease pathology, as well as limited understanding of the secondary injury cascade that follows the initial trauma. As a result, patients with TBI have an unmet need for effective pharmacological therapies. One promising drug candidate is cyclosporine, a polypeptide traditionally used to achieve immunosuppression in transplant recipients. Cyclosporine inhibits mitochondrial permeability transition, thereby reducing secondary brain injury, and has shown neuroprotective effects in multiple preclinical models of TBI. Moreover, the cyclosporine formulation NeuroSTAT® displayed positive effects on injury biomarker levels in patients with severe TBI enrolled in the Phase Ib/IIa Copenhagen Head Injury Ciclosporin trial (NCT01825044). Future research on neuroprotective compounds such as cyclosporine should take advantage of recent advances in fluid-based biomarkers and neuroimaging to select patients with similar disease pathologies for clinical trials. This would increase statistical power and allow for more accurate assessment of long-term outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Fármacos Neuroprotetores , Humanos , Ciclosporina/uso terapêutico , Ciclosporina/farmacologia , Lesões Encefálicas Traumáticas/tratamento farmacológico , Lesões Encefálicas/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Biomarcadores
3.
Mol Cell Biochem ; 478(6): 1231-1244, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36282352

RESUMO

Sodium fluoroacetate (FA) is a metabolic poison that systemically inhibits the tricarboxylic acid (TCA) cycle, causing energy deficiency and ultimately multi-organ failure. It poses a significant threat to society because of its high toxicity, potential use as a chemical weapon and lack of effective antidotal therapy. In this study, we investigated cell-permeable succinate prodrugs as potential treatment for acute FA intoxication. We hypothesized that succinate prodrugs would bypass FA-induced mitochondrial dysfunction, provide metabolic support, and prevent metabolic crisis during acute FA intoxication. To test this hypothesis, rats were exposed to FA (0.75 mg/kg) and treated with the succinate prodrug candidate NV354. Treatment efficacy was evaluated based on cardiac and cerebral mitochondrial respiration, mitochondrial content, metabolic profiles and tissue pathology. In the heart, FA increased concentrations of the TCA metabolite citrate (+ 4.2-fold, p < 0.01) and lowered ATP levels (- 1.9-fold, p < 0.001), confirming the inhibition of the TCA cycle by FA. High-resolution respirometry of cardiac mitochondria further revealed an impairment of mitochondrial complex V (CV)-linked metabolism, as evident by a reduced phosphorylation system control ratio (- 41%, p < 0.05). The inhibition of CV-linked metabolism is a novel mechanism of FA cardiac toxicity, which has implications for drug development and which NV354 was unable to counteract at the given dose. In the brain, FA induced the accumulation of ß-hydroxybutyrate (+ 1.4-fold, p < 0.05) and the reduction of mitochondrial complex I (CI)-linked oxidative phosphorylation (OXPHOSCI) (- 20%, p < 0.01), the latter of which was successfully alleviated by NV354. This promising effect of NV354 warrants further investigations to determine its potential neuroprotective effects.


Assuntos
Pró-Fármacos , Ratos , Animais , Pró-Fármacos/farmacologia , Pró-Fármacos/metabolismo , Ácido Succínico/metabolismo , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Complexo I de Transporte de Elétrons/metabolismo , Fluoracetatos/farmacologia , Fluoracetatos/metabolismo
4.
Sci Rep ; 12(1): 20329, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36434021

RESUMO

Pesticides account for hundreds of millions of cases of acute poisoning worldwide each year, with organophosphates (OPs) being responsible for the majority of all pesticide-related deaths. OPs inhibit the enzyme acetylcholinesterase (AChE), which leads to impairment of the central- and peripheral nervous system. Current standard of care (SOC) alleviates acute neurologic-, cardiovascular- and respiratory symptoms and reduces short term mortality. However, survivors often demonstrate significant neurologic sequelae. This highlights the critical need for further development of adjunctive therapies with novel targets. While the inhibition of AChE is thought to be the main mechanism of injury, mitochondrial dysfunction and resulting metabolic crisis may contribute to the overall toxicity of these agents. We hypothesized that the mitochondrially targeted succinate prodrug NV354 would support mitochondrial function and reduce brain injury during acute intoxication with the OP diisopropylfluorophosphate (DFP). To this end, we developed a rat model of acute DFP intoxication and evaluated the efficacy of NV354 as adjunctive therapy to SOC treatment with atropine and pralidoxime. We demonstrate that NV354, in combination with atropine and pralidoxime therapy, significantly improved cerebral mitochondrial complex IV-linked respiration and reduced signs of brain injury in a rodent model of acute DFP exposure.


Assuntos
Lesões Encefálicas , Intoxicação por Organofosfatos , Pró-Fármacos , Animais , Ratos , Intoxicação por Organofosfatos/tratamento farmacológico , Atropina/farmacologia , Atropina/uso terapêutico , Pró-Fármacos/farmacologia , Isoflurofato/toxicidade , Ácido Succínico , Acetilcolinesterase/metabolismo , Roedores/metabolismo , Succinatos , Mitocôndrias/metabolismo , Lesões Encefálicas/tratamento farmacológico
5.
J Cardiothorac Vasc Anesth ; 36(7): 1985-1994, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34969566

RESUMO

OBJECTIVES: The augmented inflammatory response to cardiac surgery is a recognized cause of postoperative acute kidney injury. The present study aimed to investigate the effects of preoperative cyclosporine treatment on cytokine production and delineate factors associated with postoperative kidney impairment. DESIGN: A randomized, double-blind, placebo-controlled, single-center study. SETTING: At a tertiary care, university hospital. PARTICIPANTS: Patients eligible for elective coronary artery bypass grafting surgery; 67 patients were enrolled. INTERVENTIONS: Patients were randomized to receive 2.5 mg/kg cyclosporine or placebo before surgery. Cytokine levels were measured after the induction of anesthesia and 4 hours after the end of cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: Tissue-aggressive (interleukin [IL]-1ß, macrophage inflammatory protein [MIP]-1ß, granulocyte colony-stimulating factor [G-CSF], IL-6, IL-8, IL-17, MCP-1), as well tissue-lenient (IL-4) cytokines, were significantly elevated in response to surgery. Changes in cytokine levels were not affected by cyclosporine pretreatment. CONCLUSIONS: Elective coronary artery bypass grafting surgery with cardiopulmonary bypass triggers cytokine activation. This activation was not impacted by preoperative cyclosporine treatment.


Assuntos
Ponte de Artéria Coronária , Ciclosporina , Ponte Cardiopulmonar , Ponte de Artéria Coronária/efeitos adversos , Ciclosporina/farmacologia , Citocinas/farmacologia , Humanos , Rim/fisiologia
6.
Int J Mol Sci ; 22(1)2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33401621

RESUMO

Statins are the cornerstone of lipid-lowering therapy. Although generally well tolerated, statin-associated muscle symptoms (SAMS) represent the main reason for treatment discontinuation. Mitochondrial dysfunction of complex I has been implicated in the pathophysiology of SAMS. The present study proposed to assess the concentration-dependent ex vivo effects of three statins on mitochondrial respiration in viable human platelets and to investigate whether a cell-permeable prodrug of succinate (complex II substrate) can compensate for statin-induced mitochondrial dysfunction. Mitochondrial respiration was assessed by high-resolution respirometry in human platelets, acutely exposed to statins in the presence/absence of the prodrug NV118. Statins concentration-dependently inhibited mitochondrial respiration in both intact and permeabilized cells. Further, statins caused an increase in non-ATP generating oxygen consumption (uncoupling), severely limiting the OXPHOS coupling efficiency, a measure of the ATP generating capacity. Cerivastatin (commercially withdrawn due to muscle toxicity) displayed a similar inhibitory capacity compared with the widely prescribed and tolerable atorvastatin, but did not elicit direct complex I inhibition. NV118 increased succinate-supported mitochondrial oxygen consumption in atorvastatin/cerivastatin-exposed platelets leading to normalization of coupled (ATP generating) respiration. The results acquired in isolated human platelets were validated in a limited set of experiments using atorvastatin in HepG2 cells, reinforcing the generalizability of the findings.


Assuntos
Plaquetas/fisiologia , Respiração Celular , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Mitocôndrias/fisiologia , Consumo de Oxigênio , Ácido Succínico/farmacologia , Adulto , Idoso , Plaquetas/efeitos dos fármacos , Feminino , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos
7.
J Neurotrauma ; 38(13): 1870-1878, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33191835

RESUMO

All phase III trials evaluating medical treatments for traumatic brain injury (TBI), performed to date, have failed. To facilitate future success there is a need for novel outcome metrics that can bridge pre-clinical studies to clinical proof of concept trials. Our objective was to assess diffusion tensor imaging (DTI) and biofluid-based biomarkers as efficacy outcome metrics in a large animal study evaluating the efficacy of cyclosporine in TBI. This work builds on our previously published study that demonstrated a reduced volume of injury by 35% with cyclosporine treatment based on magnetic resonance imaging (MRI) results. A focal contusion injury was induced in piglets using a controlled cortical impact (CCI) device. Cyclosporine in a novel Cremophor/Kolliphor EL-free lipid emulsion, NeuroSTAT, was administered by continuous intravenous infusion for 5 days. The animals underwent DTI on day 5. Glial fibrillary acidic protein (GFAP), as a measure of astroglia injury, and neurofilament light (NF-L), as a measure of axonal injury, were measured in blood on days 1, 2, and 5, and in cerebrospinal fluid (CSF) on day 5 post-injury. Normalized fractional anisotropy (FA) was significantly (p = 0.027) higher in in the treatment group, indicating preserved tissue integrity with treatment. For the biomarkers, we observed a statistical trend of a decreased level of NF-L in CSF (p = 0.051), in the treatment group relative to placebo, indicating less axonal injury. Our findings suggest that DTI, and possibly CSF NF-L, may be feasible as translational end-points assessing neuroprotective drugs in TBI.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/metabolismo , Ciclosporina/uso terapêutico , Imagem de Tensor de Difusão/normas , Animais , Animais Recém-Nascidos , Biomarcadores/sangue , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/tratamento farmacológico , Imagem de Tensor de Difusão/métodos , Feminino , Imunossupressores/uso terapêutico , Suínos
8.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823731

RESUMO

Oxidative stress is associated with many renal disorders, both acute and chronic, and has also been described to contribute to the disease progression. Therefore, oxidative stress is a potential therapeutic target. The human antioxidant α1-microglobulin (A1M) is a plasma and tissue protein with heme-binding, radical-scavenging and reductase activities. A1M can be internalized by cells, localized to the mitochondria and protect mitochondrial function. Due to its small size, A1M is filtered from the blood into the glomeruli, and taken up by the renal tubular epithelial cells. A1M has previously been described to reduce renal damage in animal models of preeclampsia, radiotherapy and rhabdomyolysis, and is proposed as a pharmacological agent for the treatment of kidney damage. In this paper, we examined the in vitro protective effects of recombinant human A1M (rA1M) in human proximal tubule epithelial cells. Moreover, rA1M was found to protect against heme-induced cell-death both in primary cells (RPTEC) and in a cell-line (HK-2). Expression of stress-related genes was upregulated in both cell cultures in response to heme exposure, as measured by qPCR and confirmed with in situ hybridization in HK-2 cells, whereas co-treatment with rA1M counteracted the upregulation. Mitochondrial respiration, analyzed with the Seahorse extracellular flux analyzer, was compromised following exposure to heme, but preserved by co-treatment with rA1M. Finally, heme addition to RPTE cells induced an upregulation of the endogenous cellular expression of A1M, via activation of the nuclear factor erythroid 2-related factor 2 (Nrf2)-pathway. Overall, data suggest that A1M/rA1M protects against stress-induced damage to tubule epithelial cells that, at least partly, can be attributed to maintaining mitochondrial function.


Assuntos
alfa-Globulinas/farmacologia , Células Epiteliais/patologia , Heme/toxicidade , Túbulos Renais Proximais/patologia , Substâncias Protetoras/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Citoproteção/efeitos dos fármacos , Proteínas de Choque Térmico HSP70/metabolismo , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/farmacologia , Estresse Fisiológico/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
9.
PLoS One ; 15(4): e0231173, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32251487

RESUMO

Acetaminophen is one of the most common over-the-counter pain medications used worldwide and is considered safe at therapeutic dose. However, intentional and unintentional overdose accounts for up to 70% of acute liver failure cases in the western world. Extensive research has demonstrated that the induction of oxidative stress and mitochondrial dysfunction are central to the development of acetaminophen-induced liver injury. Despite the insight gained on the mechanism of acetaminophen toxicity, there still is only one clinically approved pharmacological treatment option, N-acetylcysteine. N-acetylcysteine increases the cell's antioxidant defense and protects liver cells from further acetaminophen-induced oxidative damage. Because it primarily protects healthy liver cells rather than rescuing the already injured cells alternative treatment strategies that target the latter cell population are warranted. In this study, we investigated mitochondria as therapeutic target for the development of novel treatment strategies for acetaminophen-induced liver injury. Characterization of the mitochondrial toxicity due to acute acetaminophen overdose in vitro in human cells using detailed respirometric analysis revealed that complex I-linked (NADH-dependent) but not complex II-linked (succinate-dependent) mitochondrial respiration is inhibited by acetaminophen. Treatment with a novel cell-permeable succinate prodrug rescues acetaminophen-induced impaired mitochondrial respiration. This suggests cell-permeable succinate prodrugs as a potential alternative treatment strategy to counteract acetaminophen-induced liver injury.


Assuntos
Acetaminofen/efeitos adversos , Analgésicos não Narcóticos/efeitos adversos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Overdose de Drogas/tratamento farmacológico , Mitocôndrias/metabolismo , Pró-Fármacos/farmacocinética , Ácido Succínico/farmacocinética , Acetaminofen/administração & dosagem , Acetaminofen/farmacologia , Idoso , Analgésicos não Narcóticos/administração & dosagem , Analgésicos não Narcóticos/farmacologia , Plaquetas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Overdose de Drogas/metabolismo , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Células Hep G2 , Hepatócitos/metabolismo , Humanos , Masculino , Mitocôndrias/efeitos dos fármacos
10.
Cells ; 8(11)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31717385

RESUMO

Hepatic fibrosis can result as a pathological response to nonalcoholic steatohepatitis (NASH). Cirrhosis, the late stage of fibrosis, has been linked to poor survival and an increased risk of developing hepatocellular carcinoma, with limited treatment options available. Therefore, there is an unmet need for novel effective antifibrotic compounds. Cyclophilins are peptidyl-prolyl cis-trans isomerases that facilitate protein folding and conformational changes affecting the function of the targeted proteins. Due to their activity, cyclophilins have been presented as key factors in several stages of the fibrotic process. In this study, we investigated the antifibrotic effects of NV556, a novel potent sanglifehrin-based cyclophilin inhibitor, in vitro and in vivo. NV556 potential antifibrotic effect was evaluated in two well-established animal models of NASH, STAM, and methionine-choline-deficient (MCD) mice, as well as in an in vitro 3D human liver ECM culture of LX2 cells, a human hepatic stellate cell line. We demonstrate that NV556 decreased liver fibrosis in both STAM and MCD in vivo models and decreased collagen production in TGFß1-activated hepatic stellate cells in vitro. Taken together, these results present NV556 as a potential candidate for the treatment of liver fibrosis.


Assuntos
Ciclofilinas/antagonistas & inibidores , Cirrose Hepática/metabolismo , Animais , Deficiência de Colina , Colágeno Tipo I/metabolismo , Dieta , Modelos Animais de Doenças , Células Estreladas do Fígado/efeitos dos fármacos , Células Estreladas do Fígado/metabolismo , Humanos , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/etiologia , Cirrose Hepática/patologia , Masculino , Metionina/deficiência , Camundongos , Terapia de Alvo Molecular , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia
11.
J Neurotrauma ; 36(23): 3253-3263, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31210099

RESUMO

Traumatic brain injury (TBI) contributes to almost one third of all trauma-related deaths, and those that survive often suffer from long-term physical and cognitive deficits. Ciclosporin (cyclosporine, cyclosporin A) has shown promising neuroprotective properties in pre-clinical TBI models. The Copenhagen Head Injury Ciclosporin (CHIC) study was initiated to establish the safety profile and pharmacokinetics of ciclosporin in patients with severe TBI, using a novel parenteral lipid emulsion formulation. Exploratory pharmacodynamic study measures included microdialysis in brain parenchyma and protein biomarkers of brain injury in the cerebrospinal fluid (CSF). Sixteen adult patients with severe TBI (Glasgow Coma Scale 4-8) were included, and all patients received an initial loading dose of 2.5 mg/kg followed by a continuous infusion for 5 days. The first 10 patients received an infusion dosage of 5 mg/kg/day whereas the subsequent 6 patients received 10 mg/kg/day. No mortality was registered within the study duration, and the distribution of adverse events was similar between the two treatment groups. Pharmacokinetic analysis of CSF confirmed dose-dependent brain exposure. Between- and within-patient variability in blood concentrations was limited, whereas CSF concentrations were more variable. The four biomarkers, glial fibrillary acidic protein, neurofilament light, tau, and ubiquitin carboxy-terminal hydrolase L1, showed consistent trends to decrease during the 5-day treatment period, whereas the samples taken on the days after the treatment period showed higher values in the majority of patients. In conclusion, ciclosporin, as administered in this study, is safe and well tolerated. The study confirmed that ciclosporin is able to pass the blood-brain barrier in a TBI population and provided an initial biomarker-based signal of efficacy.


Assuntos
Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/tratamento farmacológico , Ciclosporina/farmacocinética , Imunossupressores/farmacocinética , Índice de Gravidade de Doença , Adulto , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/epidemiologia , Ciclosporina/efeitos adversos , Ciclosporina/uso terapêutico , Dinamarca/epidemiologia , Feminino , Escala de Coma de Glasgow/normas , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/uso terapêutico , Masculino , Pessoa de Meia-Idade , Adulto Jovem
12.
Intensive Care Med Exp ; 6(1): 22, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30069806

RESUMO

BACKGROUND: Metformin is the most common pharmacological treatment for type 2 diabetes. It is considered safe but has been associated with the development of lactic acidosis under circumstances where plasma concentrations exceed therapeutic levels. Metformin-induced lactic acidosis has been linked to the drug's toxic effect on mitochondrial function. Current treatment strategies aim to remove the drug and correct for the acidosis. With a mortality of 20%, complementary treatment strategies are needed. In this study, it was investigated whether targeting mitochondria with pharmacological agents that bypass metformin-induced mitochondrial dysfunction can counteract the energetic deficit linked to toxic doses of metformin. METHODS: The redox agent methylene blue and the cell-permeable succinate prodrug NV118 were evaluated by measuring mitochondrial respiration and lactate production of human platelets exposed to metformin and co-treated with either of the two pharmacological bypass agents. RESULTS: The cell-permeable succinate prodrug NV118 increased mitochondrial respiration which was linked to phosphorylation by the ATP-synthase and alleviated the increase in lactate production induced by toxic doses of metformin. The redox agent methylene blue, in contrast, failed to mitigate the metformin-induced changes in mitochondrial respiration and lactate generation. CONCLUSIONS: The cell-permeable succinate prodrug NV118 bypassed the mitochondrial dysfunction and counteracted the energy deficit associated with toxic doses of metformin. If similar effects of NV118 prove translatable to an in vivo effect, this pharmacological strategy presents as a promising complementary treatment for patients with metformin-induced lactic acidosis.

13.
J Neurotrauma ; 2018 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-29929438

RESUMO

Mitochondrial dysfunction is thought to be a hallmark of traumatic brain injury (TBI) and plays a pivotal role in the resulting cellular injury. Cyclophilin D-mediated activation of the mitochondrial permeability transition pore has been suggested to contribute to this secondary injury cascade. Cyclosporine possesses neuroprotective properties that have been attributed to the desensitization of mitochondrial permeability transition pore activation. In vivo animal experiments have demonstrated neuroprotective effects of cyclosporine in more than 20 independent experimental studies in a multitude of different experimental models. However, the majority of these studies have been carried out in rodents. The aim of the present study was to evaluate the efficacy of a novel and cremophor/kolliphor EL-free lipid emulsion formulation of cyclosporine in a translational large animal model of TBI. A mild-to-moderate focal contusion injury was induced in piglets using a controlled cortical impact device. After initial step-wise analyses of pharmacokinetics and comparing with exposure of cyclosporine in clinical TBI trials, a 5-day dosing regimen with continuous intravenous cyclosporine infusion (20 mg/kg/day) was evaluated in a randomized and blinded placebo-controlled setting. Cyclosporine reduced the volume of parenchymal injury by 35%, as well as improved markers of neuronal injury, as measured with magnetic resonance spectroscopic imaging. Further, a consistent trend toward positive improvements in brain metabolism and mitochondrial function was observed in the pericontusional tissue. In this study, we have demonstrated efficacy using a novel cyclosporine formulation in clinically relevant and translatable outcome metrics in a large animal model of focal TBI.

14.
Anesthesiology ; 128(4): 710-717, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29369890

RESUMO

BACKGROUND: Acute kidney injury is a common complication after cardiac surgery, leading to increased morbidity and mortality. One suggested cause for acute kidney injury is extracorporeal circulation-induced ischemia-reperfusion injury. In animal studies, cyclosporine has been shown to reduce ischemia-reperfusion injury in the kidneys. We hypothesized that administering cyclosporine before extracorporeal circulation could protect the kidneys in patients undergoing cardiac surgery. METHODS: The Cyclosporine to Protect Renal Function in Cardiac Surgery (CiPRICS) study was an investigator-initiated, double-blind, randomized, placebo-controlled, single-center study. The primary objective was to assess if cyclosporine could reduce acute kidney injury in patients undergoing coronary artery bypass grafting surgery with extracorporeal circulation. In the study, 154 patients with an estimated glomerular filtration rate of 15 to 90 ml · min · 1.73 m were enrolled. Study patients were randomized to receive 2.5 mg/kg cyclosporine or placebo intravenously before surgery. The primary endpoint was relative plasma cystatin C changes from the preoperative day to postoperative day 3. Secondary endpoints included biomarkers of kidney, heart, and brain injury. RESULTS: All enrolled patients were analyzed. The cyclosporine group (136.4 ± 35.6%) showed a more pronounced increase from baseline plasma cystatin C to day 3 compared to placebo (115.9 ± 30.8%), difference, 20.6% (95% CI, 10.2 to 31.2%, P < 0.001). The same pattern was observed for the other renal markers. The cyclosporine group had more patients in Risk Injury Failure Loss End-stage (RIFLE) groups R (risk), I (injury), or F (failure; 31% vs. 8%, P < 0.001). There were no differences in safety parameter distribution between groups. CONCLUSIONS: Administration of cyclosporine did not protect coronary artery bypass grafting patients from acute kidney injury. Instead, cyclosporine caused a decrease in renal function compared to placebo that resolved after 1 month.


Assuntos
Injúria Renal Aguda/epidemiologia , Ponte de Artéria Coronária/tendências , Ciclosporina/administração & dosagem , Taxa de Filtração Glomerular/efeitos dos fármacos , Complicações Pós-Operatórias/epidemiologia , Cuidados Pré-Operatórios/métodos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/fisiopatologia , Idoso , Ponte de Artéria Coronária/métodos , Ciclosporina/efeitos adversos , Método Duplo-Cego , Feminino , Taxa de Filtração Glomerular/fisiologia , Humanos , Imunossupressores/administração & dosagem , Imunossupressores/efeitos adversos , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/induzido quimicamente , Complicações Pós-Operatórias/fisiopatologia , Cuidados Pré-Operatórios/efeitos adversos
15.
Pediatr Res ; 83(2): 455-465, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28981487

RESUMO

BackgroundDiagnosing mitochondrial disease (MD) is a challenge. In addition to genetic analyses, clinical practice is to perform invasive procedures such as muscle biopsy for biochemical and histochemical analyses. Blood cell respirometry is rapid and noninvasive. Our aim was to explore its possible role in diagnosing MD.MethodsBlood samples were collected from 113 pediatric patients, for whom MD was a differential diagnosis. A respiratory analysis model based on ratios (independent of mitochondrial specific content) was derived from a group of healthy controls and tested on the patients. The diagnostic accuracy of platelet respirometry was evaluated against routine diagnostic investigation.ResultsMD prevalence in the cohort was 16%. A ratio based on the respiratory response to adenosine diphosphate in the presence of complex I substrates had 96% specificity for disease and a positive likelihood ratio of 5.3. None of the individual ratios had sensitivity above 50%, but a combined model had 72% sensitivity.ConclusionNormal findings of platelet respirometry are not able to rule out MD, but pathological results make the diagnosis more likely and could strengthen the clinical decision to perform further invasive analyses. Our results encourage further study into the role of blood respirometry as an adjunct diagnostic tool for MD.


Assuntos
Plaquetas/metabolismo , Mitocôndrias/metabolismo , Doenças Mitocondriais/sangue , Doenças Mitocondriais/diagnóstico , Consumo de Oxigênio , Biópsia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Ácido Láctico/sangue , Masculino , Oxigênio/química , Prevalência , Sensibilidade e Especificidade
16.
J Nucl Cardiol ; 24(6): 1912-1921, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-27506700

RESUMO

BACKGROUND: Large body size can cause a higher proportion of emitted photons being attenuated within the patient. Therefore, clinical myocardial perfusion SPECT (MPS) protocols often include unproportionally higher radioisotope activity to obese patients. The aim was to evaluate if a linear weight-adjusted low-dose protocol can be applied to obese patients and thereby decrease radiation exposure. METHODS AND RESULT: Two hundred patients (>110 kg, BMI 18-41, [n = 69], ≤ 110 kg, BMI 31-58, [n = 131]) underwent 99mTc-tetrofosmin stress examination on a Cadmium Zinc Telluride or a conventional gamma camera using new generations of reconstruction algorithm (Resolution Recovery). Patients <110 kg were administered 2.5 MBq/kg, patients between 110 and 120 kg received 430 MBq and patients >120 kg received 570 MBq according to clinical routine. Patients >110 kg had 130% total number of counts in the images compared to patients <110 kg. Recalculating the counts to correspond to an administered activity of 2.5 MBq/kg resulted in similar number of counts across the groups. Image analyses in a subgroup with images corresponding to high activity and 2.5 MBq/kg showed no difference in image quality or ischemia quantification. CONCLUSION: Linear low-dose weight-adjusted protocol of 2.5 MBq/kg in MPS can be applied over a large weight span without loss of counts or image quality, resulting in a significant reduction in radiation exposure to obese patients.


Assuntos
Imagem de Perfusão do Miocárdio , Sobrepeso/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada de Emissão de Fóton Único , Idoso , Peso Corporal , Protocolos Clínicos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Compostos Organofosforados , Compostos de Organotecnécio , Exposição à Radiação
17.
BMJ Open ; 6(12): e012299, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27979834

RESUMO

INTRODUCTION: Acute kidney injury (AKI) after cardiac surgery is common and results in increased morbidity and mortality. One possible mechanism for AKI is ischaemia-reperfusion injury caused by the extracorporeal circulation (ECC), resulting in an opening of the mitochondrial permeability transition pore (mPTP) in the kidneys, which can lead to cell injury or cell death. Ciclosporin may block the opening of mPTP if administered before the ischaemia-reperfusion injury. We hypothesised that ciclosporin given before the start of ECC in cardiac surgery can decrease the degree of AKI. METHODS AND ANALYSIS: Ciclosporin to Protect Renal function In Cardiac Surgery (CiPRICS) study is an investigator-initiated double-blind, randomised, placebo-controlled, parallel design, single-centre study performed at a tertiary university hospital. The primary objective is to assess the safety and efficacy of ciclosporin to limit the degree of AKI in patients undergoing coronary artery bypass grafting surgery. We aim to evaluate 150 patients with a preoperative estimated glomerular filtration rate of 15-90 mL/min/1.73 m2. Study patients are randomised in a 1:1 ratio to receive study drug 2.5 mg/kg ciclosporin or placebo as an intravenous injection after anaesthesia induction but before start of surgery. The primary end point consists of relative P-cystatin C changes from the preoperative day to postoperative day 3. The primary variable will be tested using an analysis of covariance method. Secondary end points include evaluation of P-creatinine and biomarkers of kidney, heart and brain injury. ETHICS AND DISSEMINATION: The trial is conducted in compliance with the current version of the Declaration of Helsinki and the International Council for Harmonisation (ICH) Good Clinical Practice guidelines E6 (R1) and was approved by the Regional Ethical Review Board, Lund and the Swedish Medical Products Agency (MPA). Written and oral informed consent is obtained before enrolment into the study. TRIAL REGISTRATION NUMBER: NCT02397213; Pre-results.


Assuntos
Injúria Renal Aguda/tratamento farmacológico , Ponte de Artéria Coronária/efeitos adversos , Ciclosporina/administração & dosagem , Imunossupressores/administração & dosagem , Complicações Pós-Operatórias/tratamento farmacológico , Cuidados Pré-Operatórios/métodos , Injúria Renal Aguda/etiologia , Biomarcadores , Creatinina/sangue , Método Duplo-Cego , Taxa de Filtração Glomerular/efeitos dos fármacos , Hospitais Universitários , Humanos , Rim/efeitos dos fármacos , Rim/fisiopatologia , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Poro de Transição de Permeabilidade Mitocondrial , Complicações Pós-Operatórias/prevenção & controle , Estudo de Prova de Conceito , Traumatismo por Reperfusão/prevenção & controle , Projetos de Pesquisa , Suécia
18.
Mitochondrion ; 31: 56-62, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27769952

RESUMO

Metabolic crisis is a clinical condition primarily affecting patients with inherent mitochondrial dysfunction in situations of augmented energy demand. To model this, ten pigs received an infusion of rotenone, a mitochondrial complex I inhibitor, or vehicle. Clinical parameters, blood gases, continuous indirect calorimetry, in vivo muscle oxygen tension, ex vivo mitochondrial respiration and metabolomics were assessed. Rotenone induced a progressive increase in blood lactate which was paralleled by an increase in oxygen tension in venous blood and skeletal muscle. There was an initial decrease in whole body oxygen utilization, and there was a trend towards inhibited mitochondrial respiration in platelets. While levels of succinate were decreased, other intermediates of glycolysis and the TCA cycle were increased. This model may be suited for evaluating pharmaceutical interventions aimed at counteracting metabolic changes due to complex I dysfunction.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Rotenona/metabolismo , Desacopladores/metabolismo , Animais , Feminino , Glicólise , Lactatos/metabolismo , Modelos Animais , Consumo de Oxigênio/fisiologia , Suínos
19.
Nat Commun ; 7: 12317, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27502960

RESUMO

Mitochondrial complex I (CI) deficiency is the most prevalent defect in the respiratory chain in paediatric mitochondrial disease. This heterogeneous group of diseases includes serious or fatal neurological presentations such as Leigh syndrome and there are very limited evidence-based treatment options available. Here we describe that cell membrane-permeable prodrugs of the complex II substrate succinate increase ATP-linked mitochondrial respiration in CI-deficient human blood cells, fibroblasts and heart fibres. Lactate accumulation in platelets due to rotenone-induced CI inhibition is reversed and rotenone-induced increase in lactate:pyruvate ratio in white blood cells is alleviated. Metabolomic analyses demonstrate delivery and metabolism of [(13)C]succinate. In Leigh syndrome patient fibroblasts, with a recessive NDUFS2 mutation, respiration and spare respiratory capacity are increased by prodrug administration. We conclude that prodrug-delivered succinate bypasses CI and supports electron transport, membrane potential and ATP production. This strategy offers a potential future therapy for metabolic decompensation due to mitochondrial CI dysfunction.


Assuntos
Permeabilidade da Membrana Celular , Complexo I de Transporte de Elétrons/deficiência , Doenças Mitocondriais/metabolismo , Pró-Fármacos/farmacologia , Ácido Succínico/farmacologia , Permeabilidade da Membrana Celular/efeitos dos fármacos , Respiração Celular/efeitos dos fármacos , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Complexo I de Transporte de Elétrons/metabolismo , Complexo II de Transporte de Elétrons/metabolismo , Fibroblastos/patologia , Humanos , Lactatos/metabolismo , Doença de Leigh/patologia , Metabolômica , Modelos Biológicos , Pró-Fármacos/química , Ácido Succínico/química
20.
Mov Disord Clin Pract ; 3(5): 472-482, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-30363579

RESUMO

BACKGROUND: Patients with Huntington's disease display symptoms from both the central nervous system and peripheral tissues. Mitochondrial dysfunction has been implicated as part of the pathogenesis of the disease and has been reported in brain tissue and extracerebral tissues, such as muscle and blood cells, but the results are inconsistent. Therefore, the authors performed a refined evaluation of mitochondrial function in 2 types of peripheral blood cells from 14 patients with Huntington's disease and 21 control subjects. Several hypotheses were predefined, including impaired mitochondrial complex II function (primary), complex I function (secondary), and maximum oxidative phosphorylation capacity (secondary) in patient cells. METHODS: High-resolution respirometry was applied to viable platelets and mononuclear cells. Data were normalized to cell counts, citrate synthase activity, and mitochondrial DNA copy numbers. RESULTS: Normalized to citrate synthase activity, platelets from patients with Huntington's disease displayed respiratory dysfunction linked to complex I, complex II, and lower maximum oxidative phosphorylation capacity. No difference was seen in mononuclear cells or when platelet data were normalized to cell counts or mitochondrial DNA. The ratio of complex I respiration through maximum oxidative phosphorylation was significantly decreased in patients compared with controls. The corresponding ratio for complex II was unaffected. CONCLUSIONS: The data indicate decreased function of mitochondrial complex I in peripheral blood cells from patients with Huntington's disease, although this could not be uniformly confirmed. The results do not confirm a systemic complex II dysfunction and do not currently support the use of mitochondrial function in blood cells as a biomarker for the disease.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA