Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(3)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36983465

RESUMO

Dutch elm disease (DED) is causing extensive mortality of ecologically and culturally valuable elm trees (Ulmus spp.). Treatment of elms with the biological vaccine Dutch Trig® has been found to provide effective protection against DED by stimulating the defensive mechanisms of the trees. We hypothesized that the same mechanisms could also affect non-target organisms associated with elms. We explored the possible effects of vaccination on epiphytes (mainly lichens) and fungal endophytes living in the bark and young xylem of treated elms. Epiphyte cover percentage was assessed visually using a grid placed on the trunks, and a culture-based approach was used to study endophytes. Epiphyte cover was lower on the trunks of vaccinated trees as compared with unvaccinated trees, but the difference was not statistically significant. The presence of slow-growing and uncommon endophytes seemed to be reduced in continuously vaccinated elms; however, the highest endophyte diversity was found in elms four years after cessation of the vaccination treatments. Our findings suggest that although vaccination may shape epiphyte and endophyte communities in elms, its impacts are not straightforward. More detailed studies are, therefore, needed to inform the sustainable application of the vaccine as a part of the integrated management of DED.

2.
Opt Express ; 30(25): 45694-45704, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36522969

RESUMO

We report on the experimental realization and a systematic study of optical frequency comb generation in doubly resonant intracavity second harmonic generation (SHG). The efficiency of intracavity nonlinear processes usually benefits from the increasing number of resonating fields. Yet, achieving the simultaneous resonance of different fields may be technically complicated, all the more when a phase matching condition must be fulfilled as well. In our cavity we can separately control the resonance condition for the fundamental and its second harmonic, by simultaneously acting on an intracavity dispersive element and on a piezo-mounted cavity mirror, without affecting the quasi-phase matching condition. In addition, by finely adjusting the laser-to-cavity detuning, we are able to observe steady comb emission across the whole resonance profile, revealing the multiplicity of comb structures, and the substantial role of thermal effects on their dynamics. Lastly, we report the results of numerical simulations of comb dynamics, which include photothermal effects, finding a good agreement with the experimental observations. Our system provides a framework for exploring the richness of comb dynamics in doubly resonant SHG systems, assisting the design of chip-scale quadratic comb generators.

3.
Opt Express ; 28(16): 24005-24021, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32752387

RESUMO

Beam self-imaging in nonlinear graded-index multimode optical fibers is of interest for many applications, such as implementing a fast saturable absorber mechanism in fiber lasers via multimode interference. We obtain a new exact solution for the nonlinear evolution of first and second order moments of a laser beam of arbitrary transverse shape carried by a graded-index multimode fiber. We have experimentally directly visualized the longitudinal evolution of beam self-imaging by means of femtosecond laser pulse propagation in both the anomalous and the normal dispersion regime of a standard telecom graded-index multimode optical fiber. Light scattering out of the fiber core via visible photo-luminescence emission permits us to directly measure the self-imaging period and the beam dynamics. Spatial shift and splitting of the self-imaging process under the action of self-focusing are also revealed.

4.
Micromachines (Basel) ; 11(2)2020 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-32102284

RESUMO

Optical frequency combs are one of the most remarkable inventions in recent decades. Originally conceived as the spectral counterpart of the train of short pulses emitted by mode-locked lasers, frequency combs have also been subsequently generated in continuously pumped microresonators, through third-order parametric processes. Quite recently, direct generation of optical frequency combs has been demonstrated in continuous-wave laser-pumped optical resonators with a second-order nonlinear medium inside. Here, we present a concise introduction to such quadratic combs and the physical mechanism that underlies their formation. We mainly review our recent experimental and theoretical work on formation and dynamics of quadratic frequency combs. We experimentally demonstrated comb generation in two configurations: a cavity for second harmonic generation, where combs are generated both around the pump frequency and its second harmonic and a degenerate optical parametric oscillator, where combs are generated around the pump frequency and its subharmonic. The experiments have been supported by a thorough theoretical analysis, aimed at modelling the dynamics of quadratic combs, both in frequency and time domains, providing useful insights into the physics of this new class of optical frequency comb synthesizers. Quadratic combs establish a new class of efficient frequency comb synthesizers, with unique features, which could enable straightforward access to new spectral regions and stimulate novel applications.

5.
Opt Lett ; 44(8): 2004-2007, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985796

RESUMO

In this Letter we theoretically investigate the formation of localized temporal dissipative structures, and their corresponding frequency combs in doubly resonant dispersive optical parametric oscillators. We derive a nonlocal mean field model, and show that domain wall locking allows for the formation of stable coherent optical frequency combs.

6.
Light Sci Appl ; 8: 31, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30886708

RESUMO

Osmotic conditions play an important role in the cell properties of human red blood cells (RBCs), which are crucial for the pathological analysis of some blood diseases such as malaria. Over the past decades, numerous efforts have mainly focused on the study of the RBC biomechanical properties that arise from the unique deformability of erythrocytes. Here, we demonstrate nonlinear optical effects from human RBCs suspended in different osmotic solutions. Specifically, we observe self-trapping and scattering-resistant nonlinear propagation of a laser beam through RBC suspensions under all three osmotic conditions, where the strength of the optical nonlinearity increases with osmotic pressure on the cells. This tunable nonlinearity is attributed to optical forces, particularly the forward-scattering and gradient forces. Interestingly, in aged blood samples (with lysed cells), a notably different nonlinear behavior is observed due to the presence of free hemoglobin. We use a theoretical model with an optical force-mediated nonlocal nonlinearity to explain the experimental observations. Our work on light self-guiding through scattering bio-soft-matter may introduce new photonic tools for noninvasive biomedical imaging and medical diagnosis.

7.
Opt Lett ; 43(24): 6033-6036, 2018 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-30547998

RESUMO

We report a theoretical investigation of quadratic frequency combs in a dispersive second-harmonic generation cavity system. We identify different dynamical regimes and demonstrate that the same system can exhibit both bright and dark localized cavity solitons in the absence of a temporal walk-off.

8.
Phys Rev Lett ; 119(5): 058101, 2017 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-28949726

RESUMO

It is commonly thought that biological media cannot exhibit an appreciable nonlinear optical response. We demonstrate, for the first time to our knowledge, a tunable optical nonlinearity in suspensions of cyanobacteria that leads to robust propagation and strong self-action of a light beam. By deliberately altering the host environment of the marine bacteria, we show experimentally that nonlinear interaction can result in either deep penetration or enhanced scattering of light through the bacterial suspension, while the viability of the cells remains intact. A theoretical model is developed to show that a nonlocal nonlinearity mediated by optical forces (including both gradient and forward-scattering forces) acting on the bacteria explains our experimental observations.

9.
Opt Lett ; 39(23): 6747-50, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25490668

RESUMO

We numerically study the mechanisms of frequency comb generation in the mid-infrared spectral region from cw-pumped silicon microring resonators. Coherent soliton comb generation may be obtained even for a pump with zero linear cavity detuning, through suitable control of the effective lifetime of free carriers from multiphoton absorption, which introduces a nonlinear cavity detuning via free-carrier dispersion. Conditions for optimal octave spanning Raman comb generation are also described.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...