Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 9952, 2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33976296

RESUMO

We present facile methods to obtain purified sporopollenin exine capsules, and provide mass balances for classical and novel purification procedures. An ionic liquid, tetrabutyl phosphonium hydroxide turned out to be the most effective in removing the intine wall. The sporopollenin capsules were investigated by fluorescent microscopy, AFM, solid-state NMR and infrared Raman spectroscopy. The latter two methods showed that sunflower and rape exines have different proportions of O-aliphatic and aromatic constituents. Purified exine capsules were coated with functionalized fluorophores. The procedures presented in this paper could contribute to further spread of the applications of this hollow, and chemically highly resistant material.


Assuntos
Biopolímeros/química , Biopolímeros/isolamento & purificação , Carotenoides/química , Carotenoides/isolamento & purificação , Pólen/química , Animais , Abelhas , Cápsulas , Espectroscopia de Ressonância Magnética/métodos , Microscopia de Força Atômica/métodos , Compostos Organofosforados/química , Análise Espectral Raman/métodos
2.
Nat Neurosci ; 22(8): 1345-1356, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31285614

RESUMO

Targeting genes to specific neuronal or glial cell types is valuable for both understanding and repairing brain circuits. Adeno-associated viruses (AAVs) are frequently used for gene delivery, but targeting expression to specific cell types is an unsolved problem. We created a library of 230 AAVs, each with a different synthetic promoter designed using four independent strategies. We show that a number of these AAVs specifically target expression to neuronal and glial cell types in the mouse and non-human primate retina in vivo and in the human retina in vitro. We demonstrate applications for recording and stimulation, as well as the intersectional and combinatorial labeling of cell types. These resources and approaches allow economic, fast and efficient cell-type targeting in a variety of species, both for fundamental science and for gene therapy.


Assuntos
Dependovirus/genética , Marcação de Genes/métodos , Neuroglia/virologia , Neurônios/virologia , Animais , Técnicas de Transferência de Genes , Humanos , Macaca fascicularis , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética , Retina/virologia
3.
Neuron ; 99(1): 117-134.e11, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29937281

RESUMO

Many brain regions contain local interneurons of distinct types. How does an interneuron type contribute to the input-output transformations of a given brain region? We addressed this question in the mouse retina by chemogenetically perturbing horizontal cells, an interneuron type providing feedback at the first visual synapse, while monitoring the light-driven spiking activity in thousands of ganglion cells, the retinal output neurons. We uncovered six reversible perturbation-induced effects in the response dynamics and response range of ganglion cells. The effects were enhancing or suppressive, occurred in different response epochs, and depended on the ganglion cell type. A computational model of the retinal circuitry reproduced all perturbation-induced effects and led us to assign specific functions to horizontal cells with respect to different ganglion cell types. Our combined experimental and theoretical work reveals how a single interneuron type can differentially shape the dynamical properties of distinct output channels of a brain region.


Assuntos
Retroalimentação , Interneurônios/fisiologia , Células Ganglionares da Retina/fisiologia , Células Horizontais da Retina/fisiologia , Visão Ocular/fisiologia , Animais , Cálcio/metabolismo , Camundongos , Modelos Neurológicos , Células Fotorreceptoras de Vertebrados , Células Bipolares da Retina , Sinapses
4.
Proc Natl Acad Sci U S A ; 114(23): 5878-5885, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28584082

RESUMO

The comparative study of cell types is a powerful approach toward deciphering animal evolution. To avoid selection biases, however, comparisons ideally involve all cell types present in a multicellular organism. Here, we use image registration and a newly developed "Profiling by Signal Probability Mapping" algorithm to generate a cellular resolution 3D expression atlas for an entire animal. We investigate three-segmented young worms of the marine annelid Platynereis dumerilii, with a rich diversity of differentiated cells present in relatively low number. Starting from whole-mount expression images for close to 100 neural specification and differentiation genes, our atlas identifies and molecularly characterizes 605 bilateral pairs of neurons at specific locations in the ventral nerve cord. Among these pairs, we identify sets of neurons expressing similar combinations of transcription factors, located at spatially coherent anterior-posterior, dorsal-ventral, and medial-lateral coordinates that we interpret as cell types. Comparison with motor and interneuron types in the vertebrate neural tube indicates conserved combinations, for example, of cell types cospecified by Gata1/2/3 and Tal transcription factors. These include V2b interneurons and the central spinal fluid-contacting Kolmer-Agduhr cells in the vertebrates, and several neuron types in the intermediate ventral ganglionic mass in the annelid. We propose that Kolmer-Agduhr cell-like mechanosensory neurons formed part of the mucociliary sole in protostome-deuterostome ancestors and diversified independently into several neuron types in annelid and vertebrate descendants.


Assuntos
Evolução Biológica , Poliquetos/genética , Algoritmos , Animais , Padronização Corporal/genética , Diferenciação Celular , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Modelos Biológicos , Neurônios/citologia , Poliquetos/citologia
5.
Front Neuroinform ; 11: 70, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29326579

RESUMO

Light stimulation with precise and complex spatial and temporal modulation is demanded by a series of research fields like visual neuroscience, optogenetics, ophthalmology, and visual psychophysics. We developed a user-friendly and flexible stimulus generating framework (GEARS GPU-based Eye And Retina Stimulation Software), which offers access to GPU computing power, and allows interactive modification of stimulus parameters during experiments. Furthermore, it has built-in support for driving external equipment, as well as for synchronization tasks, via USB ports. The use of GEARS does not require elaborate programming skills. The necessary scripting is visually aided by an intuitive interface, while the details of the underlying software and hardware components remain hidden. Internally, the software is a C++/Python hybrid using OpenGL graphics. Computations are performed on the GPU, and are defined in the GLSL shading language. However, all GPU settings, including the GPU shader programs, are automatically generated by GEARS. This is configured through a method encountered in game programming, which allows high flexibility: stimuli are straightforwardly composed using a broad library of basic components. Stimulus rendering is implemented solely in C++, therefore intermediary libraries for interfacing could be omitted. This enables the program to perform computationally demanding tasks like en-masse random number generation or real-time image processing by local and global operations.

6.
EMBO Mol Med ; 6(9): 1175-90, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25092770

RESUMO

In this report, we describe the development of a modified adeno-associated virus (AAV) capsid and promoter for transduction of retinal ON-bipolar cells. The bipolar cells, which are post-synaptic to the photoreceptors, are important retinal targets for both basic and preclinical research. In particular, a therapeutic strategy under investigation for advanced forms of blindness involves using optogenetic molecules to render ON-bipolar cells light-sensitive. Currently, delivery of adequate levels of gene expression is a limiting step for this approach. The synthetic AAV capsid and promoter described here achieves high level of optogenetic transgene expression in ON-bipolar cells. This evokes high-frequency (~100 Hz) spiking responses in ganglion cells of previously blind, rd1, mice. Our vector is a promising vehicle for further development toward potential clinical use.


Assuntos
Dependovirus/genética , Células Bipolares da Retina/virologia , Transdução Genética/métodos , Animais , Vetores Genéticos , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mutagênese Sítio-Dirigida , Regiões Promotoras Genéticas
7.
J Neurosci Methods ; 211(1): 103-13, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22939921

RESUMO

In order to understand how retinal circuits encode visual scenes, the neural activity of defined populations of retinal ganglion cells (RGCs) has to be investigated. Here we report on a method for stimulating, detecting, and subsequently targeting defined populations of RGCs. The possibility to select a distinct population of RGCs for extracellular recording enables the design of experiments that can increase our understanding of how these neurons extract precise spatio-temporal features from the visual scene, and how the brain interprets retinal signals. We used light stimulation to elicit a response from physiologically distinct types of RGCs and then utilized the dynamic-configurability capabilities of a microelectronics-based high-density microelectrode array (MEA) to record their synchronous action potentials. The layout characteristics of the MEA made it possible to stimulate and record from multiple, highly overlapping RGCs simultaneously without light-induced artifacts. The high-density of electrodes and the high signal-to-noise ratio of the MEA circuitry allowed for recording of the activity of each RGC on 14±7 electrodes. The spatial features of the electrical activity of each RGC greatly facilitated spike sorting. We were thus able to localize, identify and record from defined RGCs within a region of mouse retina. In addition, we stimulated and recorded from genetically modified RGCs to demonstrate the applicability of optogenetic methods, which introduces an additional feature to target a defined cell type. The developed methodologies can likewise be applied to other neuronal preparations including brain slices or cultured neurons.


Assuntos
Eletrodos , Microeletrodos , Células Ganglionares da Retina/fisiologia , Potenciais de Ação/fisiologia , Animais , Artefatos , Channelrhodopsins , Interpretação Estatística de Dados , Dependovirus/genética , Estimulação Elétrica , Espaço Extracelular/fisiologia , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Optogenética , Estimulação Luminosa
8.
J Chem Phys ; 123(3): 34707, 2005 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-16080755

RESUMO

Simple inorganic reactions in gels, such as NaOH + CuCl(2), NaOH + AgNO(3), and CuCl(2) + K(3)[Fe(CN)(6)], can yield to various precipitation patterns. The first compound penetrates in a hydrogel by diffusion, and reacts with the second compound homogenized in the gel. The precipitate patterns formed in these reactions have got two kinds of bordering surfaces. Recent experimental results suggested that one of these surfaces has an ion-selective (semipermeable) character: It restrains the diffusion of the reacting ion contained by the reactant that diffuses into the gel. In this paper, we built the above experimental observation into a reaction-diffusion cellular-automata model of the pattern formation. Computer simulations showed that the model is able to reproduce the basic building elements of the patterns.

9.
J Chem Phys ; 120(5): 2413-6, 2004 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-15268381

RESUMO

Reaction-diffusion systems where one of the reagents (outer electrolyte) penetrates into a gel by diffusion and forms a precipitate with the other reagent (inner electrolyte) homogenized in the gel, are able to produce various complex precipitation patterns. The previously studied NaOH + AgNO3 and recently discovered CuCl2 + K3[Fe(CN)6] processes, (where the first reagent is the outer electrolyte and the other is the inner electrolyte homogenized in the gel), when reacted using the above mentioned method, are able to generate tessellations of a plane by a mechanism dependant on the dynamics of so-called regressing edges of the reaction fronts. The spontaneous partitioning of the reacted phases results in the construction of a pattern analogous to a Voronoi diagram or one of their generalizations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...