Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 15: 1352105, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38590745

RESUMO

Introduction: Flax (Linum usitatissimum) is a crop producing valuable products like seeds and fiber. However, its cultivation faces challenges from environmental stress factors and significant yield losses due to fungal infections. The major threat is Fusarium oxysporum f.sp lini, causing fusarium wilt of flax. Interestingly, within the Fusarium family, there are non-pathogenic strains known as biocontrols, which protect plants from infections caused by pathogenic strains. When exposed to a non-pathogenic strain, flax exhibits defense responses similar to those seen during pathogenic infections. This sensitization process activates immune reactions, preparing the plant to better combat potential pathogenic strains. The plant cell wall is crucial for defending against pathogens. It serves as the primary barrier, blocking pathogen entry into plant cells. Methods: The aim of the study was to investigate the effects of treating flax with a non-pathogenic Fusarium oxysporum strain, focusing on cell wall remodeling. The infection's progress was monitored by determining the fungal DNA content and microscopic observation. The plant defense response was confirmed by an increase in the level of Pathogenesis-Related (PR) genes transcripts. The reorganization of flax cell wall during non-pathogenic Fusarium oxysporum strain infection was examined using Infrared spectroscopy (IR), determination of cell wall polymer content, and analysis of mRNA level of genes involved in their metabolism. Results and discussion: IR analysis revealed reduced cellulose content in flax seedlings after treatment with Fo47 and that the cellulose chains were shorter and more loosely bound. Hemicellulose content was also reduced but only after 12h and 36h. The total pectin content remained unchanged, while the relative share of simple sugars and uronic acids in the pectin fractions changed over time. In addition, a dynamic change in the level of methylesterification of carboxyl groups of pectin was observed in flax seedlings treated with Fo47 compared to untreated seedlings. The increase in lignin content was observed only 48 hours after the treatment with non-pathogenic Fusarium oxysporum. Analysis of mRNA levels of cell wall polymer metabolism genes showed significant changes over time in all analyzed genes. In conclusion, the research suggests that the rearrangement of the cell wall is likely one of the mechanisms behind flax sensitization by the non-pathogenic Fusarium oxysporum strain. Understanding these processes could help in developing strategies to enhance flax's resistance to fusarium wilt and improve its overall yield and quality.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 308: 123760, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38141502

RESUMO

A new methyl-dinitro-phenylhydrazinyl-pyridine derivative [2-methyl-3,5-dinitro-6-(2-phenylhydrazinyl)pyridine] was synthesised and characterised by means of structural and spectroscopic measurements. The X-ray diffraction studies revealed that the compound crystallises in the centrosymmetric monoclinic space group P21/n, with two symmetry-independent molecules in the asymmetric unit with Z = 8. Hydrazo bridge C-NH-NH-C links two fragments composed of phenyl ring and pyridine unit substituted with methyl and nitro groups. Such a structure was confirmed by 1H and 13C NMR studies as well as IR, Raman, UV-Vis, and emission spectra. The results were analysed using the quantum-chemical DFT calculations. The paper reports the vibrational characteristics and discusses dynamical properties of this moiety. The full set of the normal modes typical of the hydrazo bridge was identified and assigned to respective IR and Raman bands. The results of structural and spectroscopic studies were used to find the dependence between the conformation of the θ-NH-NH-ϕ system and its optic properties. The experimental UV-Vis and emission spectra were discussed in terms of the calculated singlet and triplet states that allowed assigning the unique spectral pattern originating from the electrons of the hydrazo-bridge system.

3.
Molecules ; 28(16)2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37630242

RESUMO

Membranes produced by crosslinking chitosan with magnesium phytate were prepared using highly deacetylated chitosan and its N-carboxymethyl, O-carboxymethyl and N,O-carboxymethyl derivatives. The conditions of the membrane production were described. IR, Raman, electron absorption and emission spectra were measured and analyzed for all the substrates. It was found that O-carboxymethyl chitosan derivative is the most effectively crosslinked by magnesium phytate, and the films formed on this substrate exhibit good mechanical parameters of strength, resistance and stability. Strong O-H···O hydrogen bonds proved to be responsible for an effective crosslinking process. Newly discovered membrane types produced from chitosan and magnesium phytate were characterized as morphologically homogenous and uniform by scanning electron microscopy (SEM) and IR measurements. Due to their good covering properties, they do not have pores or channels and are proposed as packaging materials.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123141, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37481842

RESUMO

The herbicides azafenidin [(2-(2,4-dichloro-5-prop-2-ynoxyphenyl)-5,6,7,8-tetrahydro-[1,2,4]triazolo[4,3-a]pyridin-3-one)] and flumetsulam [(N-(2,6-difluorophenyl)-5-methyl-[1,2,4]triazolo[1,5-a]pyrimidine-2-sulfonamide)] were subjected to IR, Raman, UV-Vis and emission studies. As triazolopyridine is the most prominent and active component of these herbicides, this molecule was characterised by XRD studies, FTIR, Raman, UV-Vis and emission spectra. The experimental data were compared to the results of the DFT quantum chemical calculations carried out for its optimised structure, IR intensities and Raman activities, HOMO-LUMO transitions, and energies of the singlet and triplet states. The characteristics for triazolopyridine quantities were used in the analysis of the studied herbicides.

5.
Metabolites ; 13(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36984877

RESUMO

Beta-ketothiolases are involved in the beta-oxidation of fatty acids and the metabolism of hormones, benzenoids, and hydroxybutyrate. The expression of bacterial beta-ketothiolase in flax (Linum usitatissimum L.) results in an increase in endogenous beta-ketothiolase mRNA levels and beta-hydroxybutyrate content. In the present work, the effect of overexpression of beta-ketothiolase on retting and stem and fibre composition of flax plants is presented. The content of the components was evaluated by high-performance liquid chromatography, gas chromatography-mass spectrometry, Fourier-transform infrared spectroscopy, and biochemical methods. Changes in the stem cell walls, especially in the lower lignin and pectin content, resulted in more efficient retting. The overexpression of beta-ketothiolase reduced the fatty acid and carotenoid contents in flax and affected the distribution of phenolic compounds between free and cell wall-bound components. The obtained fibres were characterized by a slightly lower content of phenolic compounds and changes in the composition of the cell wall. Based on the IR analysis, we concluded that the production of hydroxybutyrate reduced the cellulose crystallinity and led to the formation of shorter but more flexible cellulose chains, while not changing the content of the cell wall components. We speculate that the changes in chemical composition of the stems and fibres are the result of the regulatory properties of hydroxybutyrate. This provides us with a novel way to influence metabolic composition in agriculturally important crops.

6.
Plants (Basel) ; 11(14)2022 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-35890446

RESUMO

For this study, the thermal degradation of palm, coconut, rice bran, and rapeseed (canola) oils was studied. Products formed during deep-frying were identified using chemical methods and these results were verified with those derived from FT-IR (Fourier-transform infrared spectroscopy) studies. Mathematically processed spectral data were analyzed in terms of the breaking of double bonds, the decomposition of the carotenoids, and the reduction of the C=O carbonyl group. Clearly visible changes in the position and intensity of some bands were used for explaining the structural changes in the studied oils. These changes prove that during the heating of the oils, decomposition of the plant fat into fatty acids appears, together with the reduction of the number of certain bonds (e.g., C=C, =C-H, and C=O) and cracking of the acylglycerol chains. The iodine values of the heated oils, determined from the FT-IR spectra measurements, show a significant decrease in their degree of unsaturation level. These effects, visible in the FT-IR spectra, confirm the chemical and structural changes derived from the chemical and physicochemical studies of the plant oils. The influence of heating time on the band intensity of proteins was also studied.

7.
Materials (Basel) ; 15(5)2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35269081

RESUMO

KMeY(PO4)2:5% Eu3+ phosphates have been synthesized by a novel hydrothermal method. Spectroscopic, structural, and morphological properties of the obtained samples were investigated by X-ray, TEM, Raman, infrared, absorption, and luminescence studies. The microscopic analysis of the obtained samples showed that the mean diameter of synthesized crystals was about 15 nm. The KCaY(PO4)2 and KSrY(PO4)2 compounds were isostructural and they crystallized in a rhabdophane-type hexagonal structure with the unit-cell parameters a = b ≈ 6.90 Å, c ≈ 6.34 Å, and a = b ≈ 7.00 Å, c ≈ 6.42 Å for the Ca and Sr compound, respectively. Spectroscopic investigations showed intense 5D0 → 7F4 transitions connected with D2 site symmetry of Eu3+ ions. Furthermore, for the sample annealed at 500 °C, europium ions were located in two optical sites, on the surface of grains and in the bulk. Thermal treatment of powders at high temperature provided better grain crystallinity and only one position of dopant in the crystalline structure. The most intense emission was possessed by the KSrY(PO4)2:5% Eu3+ sample calcinated at 500 °C.

8.
Molecules ; 27(3)2022 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-35163987

RESUMO

The structural and spectroscopic properties of a new triazolopyridine derivative (1,2,4-triazolo[4,3-a]pyridin-3-amine) are described in this paper. Its FTIR spectrum was recorded in the 100-4000 cm-1 range and its FT-Raman spectrum in the range 80-4000 cm-1. The molecular structure and vibrational spectra were analyzed using the B3LYP/6-311G(2d,2p) approach and the GAUSSIAN 16W program. The assignment of the observed bands to the respective normal modes was proposed on the basis of PED calculations. XRD studies revealed that the studied compound crystallizes in the centrosymmetric monoclinic space group P21/n with eight molecules per unit cell. However, the asymmetric unit contains two 1,2,4-triazolo[4,3-a]pyridin-3-amine molecules linked via N-H⋯N hydrogen bonds with a R22(8) graph. The stability of the studied molecule was considered using NBO analysis. Electron absorption and the luminescence spectra were measured and discussed in terms of the calculated singlet, triplet, HOMO and LUMO electron energies. The Stokes shifts derived from the optical spectra were equal to 9410 cm-1 for the triazole ring and 7625 cm-1 for the pyridine ring.

9.
Molecules ; 26(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34834118

RESUMO

The molecular structure and vibrational spectra of loganic acid (LA) were calculated using B3LYP density functional theory, the 6-311G(2d,2p) basis set, and the GAUSSIAN 03W program. The solid-phase FTIR and FT-Raman spectra of LA were recorded in the 100-4000 cm-1 range. The assignment of the observed bands to the respective normal modes was proposed on the basis of the PED approach. The stability of the LA molecule was considered using NBO analysis. The electron absorption and luminescence spectra were measured and discussed in terms of the calculated singlet, triplet, HOMO, and LUMO electron energies. The Stokes shift derived from the optical spectra was 20,915 cm-1.

10.
Dalton Trans ; 50(30): 10580-10592, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34269363

RESUMO

Coordination polymers with multiple non-centrosymmetric phases have sparked substantial research efforts in the materials community. We report the synthesis and properties of a hitherto unknown cadmium dicyanamide coordination polymer comprising benzyltrimethylammonium cations (BeTriMe+). The room-temperature (RT) crystal structure of [BeTriMe][Cd(N(CN)2)3] (BeTriMeCd) is composed of Cd centers linked together by triple dca-bridges to form one-dimensional chains with BeTriMe+ cations located in void spaces between the chains. The structure is polar, the space group is Cmc21, and the spontaneous polarization in the c-direction is induced by an arrangement of BeTriMe+ dipoles. BeTriMeCd undergoes a second-order phase transition (PT) at T1 = 268 K to a monoclinic polar phase P21. Much more drastic structural changes occur at the first-order PT observed in DSC at T2 = 391 K. Raman data prove that the PT at T2 leads to extensive rearrangement of the Cd-dca coordination sphere and pronounced disorder of both dca and BeTriMe+. On cooling, the HT polymorph transforms at T3 = 266 K to another phase of unknown symmetry. Temperature-resolved second harmonic generation (TR-SHG) studies at 800 nm confirm the structural non-centrosymmetry of all the phases detected. Optical studies indicate that BeTriMeCd exhibits at low temperatures an intense emission under 266 nm excitation. Strong temperature dependence of both one-photon excited luminescence and SHG response allowed for the demonstration of two disparate modes of optical thermometry for a single material. One is the classic ratiometric luminescence thermometry employing linear excitation in the ultraviolet region while the other is single-band SHG thermometry, a thus far unprecedented subtype of nonlinear optical thermometry. Thus, BeTriMeCd is a rare example of a dicyanamide framework exhibiting polar order, SHG activity, photoluminescence properties and linear and nonlinear optical temperature sensing capability.

11.
Molecules ; 25(21)2020 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-33182446

RESUMO

Recently discovered hybrid perovskites based on hypophosphite ligands are a promising class of compounds exhibiting unusual structural properties and providing opportunities for construction of novel functional materials. Here, we report for the first time the detailed studies of phonon properties of manganese hypophosphite templated with methylhydrazinium cations ([CH3NH2NH2][Mn(H2PO2)3]). Its room temperature vibrational spectra were recorded for both polycrystalline sample and a single crystal. The proposed assignment based on Density Functional Theory (DFT) calculations of the observed vibrational modes is also presented. It is worth noting this is first report on polarized Raman measurements in this class of hybrid perovskites.


Assuntos
Compostos de Cálcio/química , Teoria da Densidade Funcional , Manganês/química , Monometilidrazina/química , Óxidos/química , Fosfitos/química , Titânio/química , Cátions , Íons , Teste de Materiais , Microscopia Confocal , Modelos Moleculares , Teoria Quântica , Software , Espectrofotometria Infravermelho , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Temperatura , Vibração
12.
Int J Mol Sci ; 21(8)2020 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-32326145

RESUMO

In mammalian cells, 3-hydroxybutyrate (3-HB) is not only an intermediate metabolite during the oxidation of fatty acids, but also an important signaling molecule. On the other hand, the information about the metabolism or function of this compound in plants is scarce. In our study, we show for the first time that this compound naturally occurs in flax. The expression of bacterial ß-ketothiolase in flax affects expression of endogenous genes of the 3-HB biosynthesis pathway and the compound content. The increase in 3-HB content in transgenic plants or after control plants treatment with 3-HB resulted in upregulation of genes involved in chromatin remodeling. The observation that 3-HB is an endogenous activator of methyltransferase 3 (CMT3), decreased DNA methylation I (DDM1), DEMETER DNA glycosylase (DME), and an inhibitor of sirtuin 1 (SRT1) provides an example of integration of different genes in chromatin remodeling. The changes in chromatin remodeling gene expression concomitant with those involved in phenolics and the lignin biosynthesis pathway suggest potential integration of secondary metabolic status with epigenetic changes.


Assuntos
Ácido 3-Hidroxibutírico/metabolismo , Metilação de DNA , Linho/genética , Linho/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido 3-Hidroxibutírico/farmacologia , Epigênese Genética , Linho/efeitos dos fármacos , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas , Redes e Vias Metabólicas , Plantas Geneticamente Modificadas , Propanóis/metabolismo , RNA Mensageiro , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Transgenic Res ; 28(1): 77-90, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30484148

RESUMO

The high demand for new biomaterials makes synthesis of polyhydroxyalkanoates (PHA) in plants an interesting and desirable achievement. Production of polymers in plants is an example of application of biotechnology for improving the properties of plants, e.g. industrial properties, but it can also provide knowledge about plant physiology and metabolism. The subject of the present study was an industrially important plant: flax, Linum usitatissimum L., of a fibre cultivar (cv Nike). In the study the gene encoding PHA synthase from Pseudomonas aeruginosa, fused to a peroxisomal targeting signal, was expressed in flax plants with the aim of modifying the mechanical properties of plants. Medium-chain-length (mcl) hydroxy acids in flax plants from tissue cultures were detected by GC-FID and FTIR method. The introduced changes did not affect fatty acid content and composition in generated flax plants. Since mcl-PHA are known as elastomers, the mechanical properties of created plants were examined. Modified plants showed increases in the values of all measured parameters (except strain at break evaluated for one modified line). The largest increase was noted for tensile stiffness, which was 2- to 3-fold higher than in wild-type plants. The values estimated for another parameter, Young's modulus, was almost at the same level in generated flax plants, and they were about 2.7-fold higher when compared to unmodified plants. The created plants also exhibited up to about 2.4-fold higher tensile strength. The observed changes were accompanied by alterations in the expression of selected genes, related to cell wall metabolism in line with the highest expression of phaC1 gene. Biochemical data were confirmed by spectroscopic methods, which also revealed that crystallinity index values of cellulose in modified flax plants were increased in comparison to wild-type flax plants and correlated with biomechanical properties of plants.


Assuntos
Aciltransferases/genética , Fenômenos Biomecânicos/genética , Linho/genética , Plantas Geneticamente Modificadas/genética , Parede Celular/enzimologia , Parede Celular/genética , Linho/enzimologia , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/enzimologia , Pseudomonas aeruginosa , Resistência à Tração
14.
Front Plant Sci ; 7: 894, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27446124

RESUMO

The chalcone synthase (CHS) gene controls the first step in the flavonoid biosynthesis. In flax, CHS down-regulation resulted in tannin accumulation and reduction in lignin synthesis, but plant growth was not affected. This suggests that lignin content and thus cell wall characteristics might be modulated through CHS activity. This study investigated the possibility that CHS affects cell wall sensing as well as polymer content and arrangement. CHS-suppressed and thus lignin-reduced plants showed significant changes in expression of genes involved in both synthesis of components and cell wall sensing. This was accompanied by increased levels of cellulose and hemicellulose. CHS-reduced flax also showed significant changes in morphology and arrangement of the cell wall. The stem tissue layers were enlarged averagely twofold compared to the control, and the number of fiber cells more than doubled. The stem morphology changes were accompanied by reduction of the crystallinity index of the cell wall. CHS silencing induces a signal transduction cascade that leads to modification of plant metabolism in a wide range and thus cell wall structure.

15.
Phys Chem Chem Phys ; 18(20): 13993-4000, 2016 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-27150209

RESUMO

We report the synthesis and characterisation of a magnesium formate framework templated by protonated imidazole. Single-crystal X-ray diffraction data showed that this compound crystallizes in the monoclinic structure in the P21/n space group with lattice parameters a = 12.1246(4) Å, b = 12.2087(5) Å, c = 12.4991(4) Å and ß = 91.39(1)°. The antiparallel arrangement of the dipole moments associated with imidazolium cations suggests the antiferroelectric character of the room-temperature phase. The studied compound undergoes a structural phase transition at 451 K associated with a halving of the c lattice parameter and the disappearance of the antiferroelectric order. The monoclinic symmetry is preserved and the new metrics are a = 12.261(7) Å, b = 12.290(4) Å, c = 6.280(4) Å, and ß = 90.62(5)°. Raman and IR data are consistent with the X-ray diffraction data. They also indicate that the disorder of imidazolium cations plays a significant role in the mechanism of the phase transition. Dielectric data show that the phase transition is associated with a relaxor nature of electric ordering. We also report high-pressure Raman scattering studies of this compound that revealed the presence of two pressure-induced phase transitions near 3 and 7 GPa. The first transition is most likely associated with a rearrangement of the imidazolium cations without any significant distortion of these cations and the magnesium formate framework, whereas the second transition leads to strong distortion of both the framework and imidazolium cations. High-pressure data also show that imidazolium magnesium formate does not show any signs of amorphization up to 11.4 GPa.

16.
BMC Plant Biol ; 16: 75, 2016 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-27005923

RESUMO

BACKGROUND: Fusarium oxysporum infection leads to Fusarium-derived wilt, which is responsible for the greatest losses in flax (Linum usitatissimum) crop yield. Plants infected by Fusarium oxysporum show severe symptoms of dehydration due to the growth of the fungus in vascular tissues. As the disease develops, vascular browning and leaf yellowing can be observed. In the case of more virulent strains, plants die. The pathogen's attack starts with secretion of enzymes degrading the host cell wall. The main aim of the study was to evaluate the role of the cell wall polymers in the flax plant response to the infection in order to better understand the process of resistance and develop new ways to protect plants against infection. For this purpose, the expression of genes involved in cell wall polymer metabolism and corresponding polymer levels were investigated in flax seedlings after incubation with Fusarium oxysporum. RESULTS: This analysis was facilitated by selecting two groups of genes responding differently to the infection. The first group comprised genes strongly affected by the infection and activated later (phenylalanine ammonia lyase and glucosyltransferase). The second group comprised genes which are slightly affected (up to five times) and their expression vary as the infection progresses. Fusarium oxysporum infection did not affect the contents of cell wall polymers, but changed their structure. CONCLUSION: The results suggest that the role of the cell wall polymers in the plant response to Fusarium oxysporum infection is manifested through changes in expression of their genes and rearrangement of the cell wall polymers. Our studies provided new information about the role of cellulose and hemicelluloses in the infection process, the change of their structure and the expression of genes participating in their metabolism during the pathogen infection. We also confirmed the role of pectin and lignin in this process, indicating the major changes at the mRNA level of lignin metabolism genes and the loosening of the pectin structure.


Assuntos
Biopolímeros/metabolismo , Parede Celular/metabolismo , Linho/microbiologia , Fusarium/fisiologia , Doenças das Plantas/microbiologia , Celulose/metabolismo , Linho/metabolismo , Lignina/metabolismo , Pectinas/metabolismo , Polissacarídeos/metabolismo
17.
Transgenic Res ; 24(6): 971-8, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26178244

RESUMO

Global warming and the reduction in our fossil fuel reservoir have forced humanity to look for new means of energy production. Agricultural waste remains a large source for biofuel and bioenergy production. Flax shives are a waste product obtained during the processing of flax fibers. We investigated the possibility of using low-lignin flax shives for biogas production, specifically by assessing the impact of CAD deficiency on the biochemical and structural properties of shives. The study used genetically modified flax plants with a silenced CAD gene, which encodes the key enzyme for lignin synthesis. Reducing the lignin content modified cellulose crystallinity, improved flax shive fermentation and optimized biogas production. Chemical pretreatment of the shive biomass further increased biogas production efficiency.


Assuntos
Oxirredutases do Álcool/deficiência , Biocombustíveis , Linho/enzimologia , Linho/metabolismo , Celulose/análise , Linho/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Lignina/análise , Pectinas/análise , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Biotechnol Prog ; 30(5): 992-1004, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25080398

RESUMO

Over the last decades, the cultivation of fibrous flax declined heavily. There are number of reasons for that fact; one of them is flax susceptibility to the pathogen infection. Damages caused mainly by fungi from genus Fusarium lead to the significant losses when cultivating flax, which in turn discourage farmers to grow flax. Therefore, to launch the new products from flax with attractive properties there is a need to obtain new flax varieties with increased resistance to pathogens. In order to obtain the better quality of flax fiber, we previously generated flax with reduced pectin or lignin level (cell wall polymers). The modifications altered also plants' resistance to the Fusarium infection. Undoubtedly, the plant defense system is complex, however, in this article we aimed to investigate the composition of modified flax seeds and to correlate it with the observed changes in the flax resistance to the pathogen attack. In particular, we evaluated the content and composition of carbohydrates (cell wall polymers: pectin, cellulose, hemicelluloses and mucilage), and phenylpropanoid compounds (lignin, lignans, phenolics). From the obtained results we concluded that the observed changes in the vulnerability to pathogens putatively correlate with the antioxidant potential of phenylpropanoids accumulated in seeds, seco-isolariciresinol and coumaric acid diglycosides in particular, and with pectin level as a carbon source for pathogens. Surprisingly, relatively less important for the resistance was the physical barrier, including lignin and cellulose amount and cellulose structure. Certainly, the hypothesis should be verified on a larger number of genotypes.


Assuntos
Biopolímeros , Resistência à Doença/fisiologia , Linho , Fusarium , Sementes/química , Antioxidantes , Biopolímeros/análise , Biopolímeros/química , Parede Celular/química , Linho/química , Linho/fisiologia , Monossacarídeos , Fenóis , Doenças das Plantas , Ácidos Urônicos
19.
Inorg Chem ; 53(18): 9615-24, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-25147972

RESUMO

Vibrational properties and the temperature-induced phase transition mechanism have been studied in [NH4][Zn(HCOO)3] and [ND4][Zn(DCOO)3] metal organic frameworks by variable-temperature dielectric, IR, and Raman measurements. DFT calculations allowed proposing the detailed assignment of vibrational modes to respective motions of atoms in the unit cell. Temperature-dependent studies reveal a very weak isotopic effect on the phase transition temperature and confirm that ordering of ammonium cations plays a major role in the mechanism of the phase transition. We also present high-pressure Raman scattering studies on [ND4][Zn(DCOO)3]. The results indicate the rigidity of the formate ions and strong compressibility of the ZnO6 octahedra. They also reveal the onset of a pressure-induced phase transition at about 1.1 GPa. This transition has strong first-order character, and it is associated with a large distortion of the metal formate framework. Our data indicate the presence of at least two nonequivalent formate ions in the high-pressure structure with very different C-D bonds. The decompression experiment shows that the transition is reversible.

20.
BMC Plant Biol ; 14: 50, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24552628

RESUMO

BACKGROUND: In recent decades cultivation of flax and its application have dramatically decreased. One of the reasons for this is unpredictable quality and properties of flax fibre, because they depend on environmental factors, retting duration and growing conditions. These factors have contribution to the fibre composition, which consists of cellulose, hemicelluloses, lignin and pectin. By far, it is largely established that in flax, lignin reduces an accessibility of enzymes either to pectin, hemicelluloses or cellulose (during retting or in biofuel synthesis and paper production).Therefore, in this study we evaluated composition and properties of flax fibre from plants with silenced CAD (cinnamyl alcohol dehydrogenase) gene, which is key in the lignin biosynthesis. There is evidence that CAD is a useful tool to improve lignin digestibility and/or to lower the lignin levels in plants. RESULTS: Two studied lines responded differentially to the introduced modification due to the efficiency of the CAD silencing. Phylogenetic analysis revealed that flax CAD belongs to the "bona-fide" CAD family. CAD down-regulation had an effect in the reduced lignin amount in the flax fibre cell wall and as FT-IR results suggests, disturbed lignin composition and structure. Moreover introduced modification activated a compensatory mechanism which was manifested in the accumulation of cellulose and/or pectin. These changes had putative correlation with observed improved fiber's tensile strength. Moreover, CAD down-regulation did not disturb at all or has only slight effect on flax plants' development in vivo, however, the resistance against flax major pathogen Fusarium oxysporum decreased slightly. The modification positively affected fibre possessing; it resulted in more uniform retting. CONCLUSION: The major finding of our paper is that the modification targeted directly to block lignin synthesis caused not only reduced lignin level in fibre, but also affected amount and organization of cellulose and pectin. However, to conclude that all observed changes are trustworthy and correlated exclusively to CAD repression, further analysis of the modified plants genome is necessary. Secondly, this is one of the first studies on the crop from the low-lignin plants from the field trail which demonstrates that such plants could be successfully cultivated in a field.


Assuntos
Oxirredutases do Álcool/metabolismo , Linho/enzimologia , Linho/metabolismo , Oxirredutases do Álcool/genética , Linho/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Lignina/metabolismo , Filogenia , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...